اثرات استفاده از جلبک اسپیرولینا بر عملکرد رشد، فراسنجه‌های خونی و برخی آنزیم‌های سیستم ایمنی گوساله‌های شیرخوار هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته مقطع دکتری، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان،

2 استاد، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی،

3 دانش‌آموخته دکتری تغذیه دام ، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

چکیده

سابقه و هدف: اسپیرولینا یک جلبک تک‌سلولی میکروسکوپی است که در آب تازه رشد می‌کند و ساختاری ساده اما ترکیبی پیچیده دارد. این جلبک حاوی منابع سرشار مواد مغذی مختلف بوده که خاصیت آنتی‌اکسیدانی و خواص پروبیوتیک داشته و می‌توانند جایگزین‌های مناسبی برای آنتی‌بیوتیک‌ها باشند و به‌صورت اختصاصی به‌عنوان محرک رشد و بهبود ضریب تبدیل غذایی در گوساله‌های هلشتاین استفاده شوند. هدف از این پژوهش بررسی اثرات استفاده از جلبک اسپیرولینا بر عملکرد رشد، فرا سنجه‌های خونی و برخی آنزیم‌های سیستم ایمنی گوساله‌های شیرخوار هلشتاین بود.
مواد و روش‌ها: جهت انجام این آزمایش، تعداد 32 رأس گوساله ماده هلشتاین بین سنین 1 الی 5 روز و میانگین وزنی 2±2/37 کیلوگرم در قالب طرح کاملاً تصادفی با 4 تیمار و 8 تکرار انتخاب شدند. تیمارهای آزمایشی شامل: 1) جیره پایه بدون افزودنی، 2) جیره پایه به همراه 1 درصد جلبک اسپیرولینا، 3) جیره پایه به همراه 2 درصد جلبک اسپیرولینا، 4) جیره پایه + 3 درصد جلبک اسپیرولینا بر اساس ماده خشک جیره بودند.
یافته‌ها : نتایج نشان داد که وزن نهایی گوساله‌های شیرخوار در اثر افزودن 3 درصد جلبک اسپیرولینا در جیره غذایی آغازین در مقایسه با گروه شاهد افزایش یافت (05/0>P). افزایش وزن روزانه گوساله‌های شیرخوار در اثر افزودن جلبک اسپیرولینا تمایل به معنی‌داری داشت. به‌طوری‌که گوساله‌های دریافت‌کننده 3 درصد جلبک اسپیرولینا افزایش وزن روزانه بیشتری در مقایسه با سایر تیمارهای آزمایشی داشتند (06/0>P). مصرف خوراک و ضریب تبدیل غذایی گوساله‌های شیرخوار با تغذیه جلبک اسپیرولینا تحت تأثیر معنی‌داری قرار نگرفت. افزودن جلبک اسپیرولینا در سطح 1 درصد طول بدن گوساله‌های شیرخوار را در 30 روزگی نسبت به تیمار شاهد افزایش داد (05/0>P). همچنین ارتفاع از جدوگاه و دور سینه گوساله‌های شیرخوار در 30 و 75 روزگی با دریافت یک درصد جلبک افزایش یافت (05/0>P). استفاده از جلبک اسپیرولینا در جیره گوساله‌های شیرخوار اثر معنی‌داری بر غلظت خونی گلوکز، تری گلیسیرید، آلبومین و اوره خون در 30 و 75 روزگی ایجاد نکرد. غلظت کلسترول در 30 روزگی با افزودن 2 درصد جلبک اسپیرولینا کاهش یافت (05/0>P). در مقابل استفاده از 2 درصد جلبک اسپیرولینا غلظت پروتئین کل را در مقایسه با گروه شاهد افزایش داد (05/0>P). غلظت خونی بتاهیدروکسی بوتیرات با افزودن 1 و 2 درصد جلبک اسپیرولینا افزایش یافت (05/0>P). غلظت آلانین آمینوترانسفراز و آسپارتات آمینوترانسفراز تحت تأثیر جلبک اسپیرولینا قرار نگرفت. غلظت سوپر اکسید دیسموتاز در 30 روزگی در گروه‌های دریافت‌کننده یک درصد جلبک افزایش معنی‌داری داشت (05/0>P). غلظت گلوتاتیون پراکسیداز، مالون دی آلدئید و ظرفیت آنتی‌اکسیدانی کل با استفاده از جلبک در جیره گوساله‌های شیرخوار تحت تأثیر قرار نگرفت.
نتیجه‌گیری: به‌طورکلی استفاده از جلبک اسپیرولینا در سطح 3 درصد بر اساس ماده خشک جیره آغازین گوساله شیرخوار هلشتاین توانست سوپراکسید دیسموتاز در 30 روزگی و ظرفیت آنتی‌اکسیدانی کل، میزان وزن نهایی بدن و افزایش وزن روزانه در 75 روزگی و در سطح 2 درصد غلظت بتاهیدروکسی بوتیرات و پروتئین کل در 75 روزگی را افزایش و کلسترول خون را در سطح 2 درصد در 30 روزگی و در سطح 1 درصد در 75 روزگی کاهش دهد. بنابر این برای افزایش سیستم ایمنی گوساله استفاده از جلبک اسپیرولینا در سطح 3 درصد بر اساس ماده خشک جیره آغازین گوساله شیرخوار هلشتاین توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of using spirulina algae on the growth performance, blood parameters and some enzymes of the immune system of Holstein suckling calves

نویسندگان [English]

  • Karim Cheshm Berah 1
  • Jamal Seifdavati 2
  • Hossein Abdi benemar 2
  • Reza Seyedsharifi 2
  • sayyad seifzadeh 3
1 Ph.D. student, Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources.
2 Professor, Department of Animal Science, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University.
3 PhD candidate in animal nutrition, Department of Animal Science, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University
چکیده [English]

Background and Objectives: Spirulina is a microscopic unicellular algae that grows in fresh water and has a simple structure but a complex composition. This algae contains rich sources of various nutrients that have antioxidant properties and probiotic properties and can be suitable substitutes for antibiotics and can be used specifically as growth stimulants and improvement of feed conversion ratio in Holstein calves. The aim of this research was to investigate the effects of using spirulina algae on the growth performance, blood parameters and some enzymes of the immune system of suckling Holstein calves.
Materials and Methods: To perform this experiment, 32 female Holstein calves between the ages of 1 to 5 days and the average weight of 37.2±2 kg were selected in a completely random design with 4 treatments and 8 replications. The experimental treatments included: 1) basic diet without additives, 2) basic diet with 1% spirulina algae, 3) basic diet with 2% spirulina algae, 4) basic diet + 3% spirulina algae based on the dry matter of the diet.
Results: The data showed that the addition of 3% level of spirulina algae in the ration of suckling calves increased the final weight compared to the control group (P<0.05). Daily weight gain of suckling calves due to the addition of spirulina algae tended to be significant, so that the calves receiving 3% spirulina algae had a greater daily weight gain compared to other experimental treatments (P<0.06). Feed consumption and feed conversion ratio of suckling calves were not significantly affected by feeding spirulina algae. Addition of spirulina algae increased the body length of suckling calves at 30 days compared to the control treatment (P<0.05). Also, the height from the withers and breast circumference of the suckling calves at 30 and 75 days old increased by receiving 1 percent algae (P<0.05). The use of spirulina algae in the diet of infant calves did not have a significant effect on the blood concentration of glucose, triglyceride, albumin and blood urea at 30 and 65 days. Cholesterol concentration decreased in 30 days by adding 2% spirulina algae (P<0.05). On the other hand, the use of 2% spirulina algae increased the total protein concentration compared to the control group (P<0.05). The blood concentration of beta-hydroxybutyrate increased with the addition of 1 and 2% spirulina algae (P<0.05). The concentration of alanine aminotransferase and aspartate aminotransferase was not affected by spirulina algae. The concentration of superoxide dismutase increased significantly after 30 days in the groups receiving one percent algae (P<0.05). The concentrations of glutathione peroxidase, malondialdehyde and total antioxidant capacity were not affected by the use of algae in the diet of suckling calves.
Conclusion: In general, the use of spirulina algae at the level of 3% based on the dry matter of the starter diet of Holstein suckling calves was able to increase superoxide dismutase at 30 days of age and total antioxidant capacity, the final body weight and daily weight gain at 75 days of age and at the level of 2% the concentration of beta-hydroxybutyrate and protein. It increased the total in 75 days and decreased the blood cholesterol at the level of 2% at 30 days and at the level of 1% at 75 days. Therefore, to increase the calf's immune system, it is recommended to use spirulina algae at the level of 3% based on the dry matter of the Holstein calf's starter diet.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • Beta-hydroxybutyrate
  • Performance
  • Starter diet
Abdel-Daim, M.M. (2014). Pharmacodynamic interaction of Spirulina platensis with erythromycin in Egyptian Baladi bucks (Capra hircus). Small ruminant Research, 120: 234–41
Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Dom, M. S., Gonz, B., Alez, A. & Erez-Gil. F. P. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha spp.as apotential food source. Journal of Food Composition and Analysis, 18:79– 88
Allen, V.G., Pond, K.R., Saker, K.K., Fontenot, J.P., Bagley, C.P., Ivy, R.L. & Evans, R.R. (2001). Tasco-Forage: III. Influence of a extract on performance, monocyte immunecell response and carcass characteristics in feed lot-finished steers. Journal of Animal Science, 79:1032–1040
AL-Shorepy, S.A., ALhandrami, G.A. & Jamali, I.A. (2001). Effect of feeding diets containing seaweed on weight gain and carcass characteristics of indigenous lambs in the United Arab Emirates. Small ruminant Research, 41: 283- 287
Al-Yahyaey, F., Shaat, I., Hall, E. & Bush, R.D. (2023). Effect of Spirulina platensis supplementation on growth, performance and body conformation of two Omani goat breeds. Animal proudaction ecience. Animal Production Science, 63: 133–141
Archer, G. S., Friend,T. H., Caldwell, D., Amiss, K. & Krawczel, P.D. (2007). Effect of the seaweed Ascephyllum nodosum on lambs during forced walking and transport. Journal of Animal Science, 85: 225232
Azab, S., Abdel-Daim, M. & Eldahshan, O. (2013). Phytochemical, cytotoxic, hepatoprotective and antioxidant properties of Delonix regia leaves extract. Medicinal Chemistry Research, 22: 4269-4277
Belay, A. 1997. Mass culture of Spirulina outdoors, the earthrise farms experience. In: applications for feed and water quality control in clam (Meretrix lusoria) cultures. Journal of Applied Phycology, 15: 439-444
Belay, A. (2002). The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management, Review. Journal of the American Nutraceutical Association, 5: 27-48
Bezerra, L.R., Silva, A.M.A., Azevedo, S.A., Mendes, R.S., Mangueira, J.M. & Gomes, A.K.A. (2010). Performance of Santa Inês lambs submitted to the use of artificial milk enriched with Spirulina platensis. Ciência Animal Brasileira, 11: 258-263
Bhattacharyya, S. & Mehta, P. (2012). The hepatoprotective potential of Spirulina and vitamin C supplementation in cisplatin toxicity. Food and Function, 3: 164-169
Boeckaert, C., Vlaeminck, B., Dijkstra, J., Issa-Zacharia, A., Van Nespen, T., Van Straalen, W. & Fievez. V. (2008). Effect of dietary starch or micro alge supplementation on rumen fermentation and milk fatty acid composition of dairy cows. Journal of Dairy Science, 91:4714–4727
Bonos, E., Kasapidu, E., Kargopoulos, A., Karampampas, A., christaki, E., Florou-paneri, P. & Nikolakakis, I. (2016). Spirulina as a functional ingredient in broiler chicken diets. South African Journal of Animal Science, 46: 94
Casas, M., Hernandez. H., Marin. A., Aguila. R. & Carrillo. S. (2003). Use of Sargassum spp algae as supplement for goats and cattle. XIII Congreso Latinoamericano de Nutrición. Acapulco Guerrero, 9-13 Noviembre México, 263pp
Celli, P. (2010). The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia, 39: 348-363
Chaji, M. and Kordnejad, E. 2019. Effect of Ascophyllum nodosum algae extract (Tasco) on performance and nutrient digestibility of finishing buffalo calves. Journal of Ruminant Research, 6: 1-14 (In Persian)
Drackley, J.K. (2008). Calf nutrition from birth to breeding. Veterinary Clinics of North America: Food Animal Practice,  24:55-86
El-Sabagh, M.R., Abd Eldaim, M.A., Mahboub, D.H. & AbdelDaim, M. (2014). Effects of Spirulina platensis algae on growth performance, antioxidative status and blood metabolites in fattening lambs. Journal of Agricultural Science, 6: 92
Gemma, C., Mesches, M.H., Sepesi, B., Choo, K., Holmes, D.B. & Bickford, P.C. (2002). Diets enriched in foods with high antioxidant activity reverse ageinduced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines. Experiment Neurology, 22: 6114–6120
Gershwin, M.E & Belay, A. (2008). Spirulina in human nutrition and health. CRC Press- Boca Raton, FL, USA
Gowda, S., Desai, P.B., Hull, V.V., Math, A.A., Vernekar, S.N. & Kulkarni, S.S. (2009). A review on laboratory liver function tests. The Pan African Medical Journal, 3: 17
Grosshagauer, S., Kraemer, K. & Somoza, V. (2020). The true value of Spirulina. Journal of Agricultural and Food Chemistry, 68: 4109-4115
Gupta, M., Dwivedi, U.N. & Khandelwal, S. (2011). C-Phycocyanin: An effective protective agent against thymic atrophy by tributyltin. Toxicology Letters, 204: 2-11
Gutiérrez-Salmeán, G., Fabila-Castillo, L. & Chamorro-Cevallos, G. (2015). Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutrición Hospitalaria, 32: 34-40
Hafez, Y.H., Mahrous, A.A., Hassanien, H.A.M., Khorshed, M.M., Youssef H.F.H. & Abd El-All, A.A.M. (2013). Effect of alage supplementation on growth performance and carcass characteristics of growing male lambs. Egyptian Journal of Nutrition and Feeds, 16: 419-426
Holman, B.W.B. & Malau-Aduli, A.E.O. (2012). Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Nutrition, 97: 615-623
Holman, B.W.B., Kashani, A. & Malau-Aduli, A.E.O. (2012). Growth and body conformation responses of genetically divergent Australian sheep to Spirulina (Arthrospira platensis) supplementation. American Journal of Experimental Agriculture, 2: 160–173
Hulbert, L.E. & Mois´a, S.J. (2016). Stress, immunity, and the management of calves. Journal of Dairy Science, 99: 3199–3216
Hwangbo, S., Choi, S.H., Kim, S.W., Son, D.S., Park, H.S., Lee, S.H. & Jo, I.H. (2009). Effects of crude protein levels in total mixed rations on growth performance and meat quality in growing Korean Black goats. Asian-Australasian Journal of Animal Sciences, 22: 1133–1139
Karimi, A., Alijo, Y., Kazemi bon Chenari, M., Mirzaei, M. & Sadri. H. (1400). Investigating the interaction effect of soybean oil and alfalfa fodder in the starter diet of Holstein weanling calves on performance, growth parameters, rumen fermentation and blood metabolites. Iranian Animal Science Research, 13: 321-334. [In Persian]
Khalifa, E.I., Hassanien, H.A.M., Mohamed, A.H., Hussein, A.M. & Abd-Elaal, A.A.M. (2016). Influence of addition Spirulina platensis algae powder on reproductive and productive performance of dairy Zaraibi goats. Egyptian Journal of Nutrition and Feeds, 19: 211- 225
Kharde, S.D., Shirbhate, R.N., Bahiram, K.B. & Nipane, S.F. (2012). Effect of Spirulina supplementation on growth performance of broiler. Indian Journal of Veterinary Research, 21:66-69
Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Vanhatalo, A. & Jaakkola, S. (2019). The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. Journal of Dairy Science, 102: 7102-7117
MacFarlance, G.T., Hay, S., MacFarlane, S. & Gibson, G.R. (1990). Effect of different carbohydrates on growth, polysaccharide and glycosidase production by Bacteroides ovatas, in batch and continuous culture. Journal Applied Microbiology, 68: 179-187
Madeira, M.S., Cardoso, C., Lopes, P.A., Coelho, D., Afonso, C., Bandarra, N.M. & Prates, J.A.M. (2017). Microalgae as feed ingredients for livestock production and meat quality: a review. Livestock Science, 205: 111–121
Makkar, H.P., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F. & Ankers P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212: 1-17
Marinal, A., Casas, M.V., Carrialo, S., Hernandez, H., Monroy, A., Sangines, L. & Perez. G. R. (2009). The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Journal of Tropical Biology, 57: 1271-1281
Marques de Assis, L., Machado, A.R., De Souza, A., Costa, J.A.V. & Souza L.A. (2014). Development and characterization of nanovesicles containing phenolic compounds of microalgae spirulina Strain LEB-18 and chlorella pyrenoidosa. Advances in Materials Physics and Chemistry, 4: 6-12
Mitchell, A.D. (2007). Impact of research with cattle, pigs, and sheep on nutritional concepts: Body composition and growth. The Journal of Nutrition, 137: 711-714
Nazmi, F., Mir Qalanj, S. A., Daneshyar, M., Karimi Tarshizi, M.A., Pandegan, S. and Hajati, H. (2022). Effects of using dry microalgae powder of Spirulina platensis (Arthrospira platensis) on growth performance, carcass characteristics and cecum microbial population of broiler chickens. Animal Science Research (Agricultural Knowledge), 32: 83-95. (In Persian)
Okpeku, M., Yakubu, A., Peters, S., Ozoje, M., Ikeobi, C., Adebambo, O. and Imumorin, I. (2011). Application of multivariate principal component analysis to morphological characterization of indigenous goats in southern Nigeria. Acta Agriculture Slovenica, 98: 101–109
P´oti, P., Pajor, F., Bodnár, Á., Penksza, K. & Köles, P. (2015). Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chilean Journal of Agricultural Research, 75: 259–263
Reddy, B.S., Yuvaraj, N., Babitha, V., Ramnath, V., Philominia, P.T. & Sabu, M.C. (2004). Antioxidant and hypolipidemic effects of Spirulina and natural carotenoids in broiler chicken. Indian Veterinary Journal, 81: 383-386
Riad, W.A., Elsadany, A.Y. & EL-diahy,Y.M. (2019). Effect of Spirulina platensis microalga additive on performance of growing Friesian calves.  Journal Animal and Poultry Production, 10: 35-40
Riss, J., Ecord’e, K.D. & Sutra, T. (2007). Phycobiliprotein C-phycocynin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. Journal Agriculture and Food Chemistry, 55: 7962-7967.
Salehian, Z., Khalil Vandi Behriuzyar, H., Pirmohammadi, R., Ahmadifard, N. & Almasi, H. (2022). Determining the nutritional value of protein in two microalgae species Isochrysis galbana (I. galbana) and Nannochloropsis oculata (N. oculata) used in animal nutrition. Journal of Ruminant Research, 10(2): 1-18 (In Persian)
SAS / STAT User's Guide. Version 9.1 Edition. 2003. SAS Inst. Cary, NC
Sugiyama, K., Ohkawa, S. & Muramatsu, K. (1986). Relationship between amino acid composition of diet and plasma cholesterol level in growing rats fed a high cholesterol diet. Journal of Nutritional Science and Vitaminology, 32: 413-423
Tian, M., He, X., Feng, Y., Wang, W., Chen, H., Gong, M., Liu, D., Clarke, J. L. & van Eerde, A. 2021. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in china, and countermeasures. Antibiotics (Basel, Switzerland), 10: 539
Tomaluski, C.R., Baggio, C., Campigotto, G., Baldissera, M.D., Souza, C.F., Da Silva, A.S. & Zotti, C.A. (2021). Use of schizochytrium spp. microalgae in suckling Holstein calves at different periods after birth. Livestock Science, 245:104424
Tovar, D., Zambonino, J., Cahu, C., Gatesoupe, F.J., Vázquez-Juárez, R. & Lésel, R. (2002). Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture, 204: 113–123
Usharani, G., Srinivasan, G., Sivasakthi, S. & Saranraj, P. (2015). Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological Research, 9: 292-298
Xu, C., Kong, L., Gao, H., Cheng, X. & Wang, X. (2022). A review of current bacterial resistance to antibiotics in food animals. Frontiers in microbiology, 13: 822689