روش های کارآمد برآورد ارزش اصلاحی ژنومی و مکان یابی QTNها در راهبردهای به نژادی گاو شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 هبات علمی- دانشگاه زابل

3 دانشگاه زابل

4 مرکز بهبود ژنتیکی دام، دانشگاه گوئلف، انتاریو، کانادا. و شرکت سیمکس، انتاریو، کانادا.

چکیده

سابقه و هدف: در دسترس بودن هزاران تک‌نکلئوتید چندشکل که در سراسر ژنوم گسترش یافته، امکان استفاده از اطلاعات نشانگرهای ژنوم گسترده در انتخاب ژنومی برای پیش‌بینی ارزش اصلاحی کل را فراهم نمودند. اثر متقابل بین چند جایگاه ژن، به تغییرات فنوتیپی مرتبط با بیان صفات پیچیده چند ژنی کمک می‌کند. مطالعه حاضر به منظور مقایسه عملکرد مدل‌های مختلف با اثر ژنتیکی افزایشی و غیرافزایشی به ویژه اثر اپیستاتیک در پیش‌بینی اجزای واریانس و ارزش‌های اصلاحی ژنومی و همچنین مکان‌یابی نوکلئوتیدهای کنترل کننده صفت کمی در یک جمعیت گاو شیری بر اساس مدل بیز لاسو انجام شد.
مواد و روش‏ها: یک جمعیت گاو شیری بر اساس انتخاب چهار مسیره به منظور بیشینه نمودن سرعت پیشرفت ژنتیکی در طی ۱۰ نسل با اندازه مؤثر 100 فرد در جمعیت تاریخی شبیه‌سازی شدند. ساختار ژنومی شامل 3 کروموزوم با طول 100 سانتی مورگان فرض شد که بر روی هر کدام 1000 نشانگر 2 آللی با فراوانی 5/0 جانمایی شدند. 50 جایگاه کنترل کننده صفت کمی دو آللی با فراوانی برابر که به صورت تصادفی در روی هر کروموزوم قرار داشتند، شبیه‌سازی شدند. برای اثرات آللی QTL از یک توزیع آماری گاما با شیب پارامتر 4/0 در نرم افزار QMSim استفاده شد و نمونه‌برداری انجام گرفت. اطلاعات فنوتیپی و ژنوتیپی 10 نسل آخر برای تجزیه و تحلیل‌ها استفاده شدند. اثرات نشانگری، مؤلفه‌های واریانس و پارامترهای ژنتیکی با روش بیز لاسو در قالب 6 مدل آماری برآورد شدند که مدل 1 شامل تنها آثار افزایشی نشانگرها، مدل 2 شامل اثرات چندژنی حیوان، مدل 3 شامل اثرات توأم افزایشی نشانگرها و چند‌ژنی حیوان، مدل 4 شامل اثرات غالبیت نشانگرها و آثار چندژنی حیوان، مدل 5 شامل اثرات افزایشی و غالبیت نشانگرها بعلاوه آثار چند‌ژنی حیوان و مدل 6 شامل اثرات افزایشی، غالبیت و اپیستاتیک نشانگرها بعلاوه آثار چند‌ژنی حیوان می‌باشند. به منظور کنترل خطای اول در برآورد آثار نشانگری از آزمون بنفرونی در سطح احتمال یک درصد استفاده شد.
یافته‏ها: نتایج این مطالعه نشان داد که مدل افزایشی (یا مدل چند ‌ژن) به تنهایی نمی‌تواند مقادیر واریانس‌های گمشده یا مخفی را نمایان سازد، به نحوی که افزودن آثار ژنتیکی غیر‌افزایشی شامل غالبیت و اپیستاتیک نشانگرها منجر به کاهش واریانس باقیمانده شد. همچنین در مدل کامل شامل آثار افزایشی و غیر‌افزایشی، واریانس ژنتیکی کل افزایش یافت. با اضافه شدن آثار غیرافزایشی در مدل آماری میزان وراثت‌پذیری عام افزایش و وراثت‌پذیری خاص صفت کاهش یافت. صحت برآورد ارزش‌های اصلاحی در مدل یک کمترین و در مدل-های 3، 4، 5 و 6 مشابه هم بودند. مدل 5 با کمترین QTN مثبت کاذب و به نسبت بیشترین مثبت واقعی مدل مناسبی در ارزیابی ژنتیکی صفت مورد مطالعه بود. با قرار دادن آثار چندژنی و آثار غیر‌افزایشی در مدل از تعداد خطاهای مثبت کاذب کاسته شد.
نتیجه‏گیری: نتایج این تحقیق نشان داد اجزای واریانس افزایشی و غالبیت نشانگرها بر میزان تنوع ژنتیکی صفت مورد مطالعه سهم کم داشت، اما اثرات چندژنی حیوان و اپیستاتیک بیشترین سهم را در بروز تنوع صفت داشتند. همچنین نتایج نشان داد که سهم عمده جایگاه های ژنی در بروز صفات مربوط به ژن های افزایشی با اثر افزایشی هستند که توزیع نرمال دارند. نادیده گرفتن آثار غیر‌افزایشی موجب التهاب در واریانس افزایشی صفت می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effective methods for estimating genomic breeding values and QTN mapping in dairy cows breeding strategies

نویسندگان [English]

  • Hossein Abdollahy 1
  • Gholam Reza Dashab 2
  • Mohammad Rokouei 3
  • Mehdi Sargolzaei 4
1 Department of Animal Science, University of Zabol, Zabol, Iran
2 department of Animal Science, University of Zabol
3 Department of Animal Science, University of Zabol, Zabol, Iran
4 Mehdi Sargolzaei, Department of Pathobiology, University of Guelph, Guelph, Canada, HiggsGene Solutions Inc., Guelph, Canada
چکیده [English]

Background and objective: The availability of thousands of polymorphic single nucleotides (SNPs) spread across the genomes made it possible to use genome-wide marker information to predict total breeding value in the implementation of genomic selection. The interaction between several gene loci contributes to the phenotypic changes associated with the expression of complex polygenic traits. The present study aimed to compare the performance of different models with additive and non-additive genetic effects, especially epistasis effects in predicting variance components and genomic breeding values as well as QTN in a dairy cow population based on Bayes Lasso model.
Materials and methods: A population of dairy cattle was simulated based on a choice of four pathways to maximize the rate of genetic progress over ten generations with an effective size of 100 individuals in the base population. The genomic structure was assumed consisting of 3 chromosomes with a length of 100 cM and On each chromosome were located 1000 markers 2 allelic markers with a frequency of 0.5. 50 QTL double alleles with equal frequency were randomly assigned to each chromosome. For QTL allelic effects, a gamma distribution with a parameter slope of 0.4 was used in QMSim software and sampling was performed. Phenotypic and genotypic data of the last 10 generations were used for analysis. Marker effects, variance components and genetic parameters were estimated using the Bayes Lasso method in the form of 6 statistical models, that model 1 includes only the marker additive effects, model 2 includes the polygenic effects of animal, model 3 includes the combined effects of additive marker effects and polygenic effects of animal, model 4 includes the dominance effect of markers and polygenic effects of animal, model 5 includes the dominance and additive effects of markers in addition to the polygenic effects of animal, and finally, model 6 includes the additive, dominance and epistatic effects of markers in addition to the polygenic effects of animal. To control the type I error in estimating marker effects, Bonferroni test was used at 1% probability level.
Results: The results of this study showed that the additive model or the polygenic model alone could not show the missing or hidden variance, in such a way that adding non-additive genetic effects including dominance and epistatic effects reduced the residual variance effects. Also in the complete model including additive and non-additive effects, the total genetic variance increased. With the addition of non-additive effects in the statistical model the Hertability in the broad sense was increased and the Hertabilitity in the narrow sense of trait decreased. The accuracy of breeding value estimation in model 1 was the lowest and in models 3 to 6 was the same. Model 5 with the lowest false positive QTN and the highest true positive proportion was the appropriate model for genetic evaluation of the studied traits. By including polygenic and non-additive effects in the model, the number of false positive errors was reduced.
Conclusion: The results of this study showed that the components of additive and dominance variance markers had a small share in the genetic diversity of the studied trait, but the polygenic effects of animal and epistatic had the largest share in the exploring of genetic diversity of trait. The results also showed that the major contribution of gene loci in the exploring of traits is related to additive genes with an additive effect that have a normal distribution. Ignoring non-incremental effects causes inflammation in the additive variance of the trait.

کلیدواژه‌ها [English]

  • Dairy cattle
  • Genomic selection
  • Variance components
  • Bayes Lasso
  • Nonadditive effects
  1. Aguilar, I., Misztal, I., Johnson, D.L., Legarra, A., Tsuruta, S. and Lawlor, T.J. 2010. A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science. 93: 743-752.
  2. Asoro, F.G., Newell, M.A., Beavis, W.D., Scott, M.P. and Jannink, J.L. 2011. Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. . Journal of Plant Genome. 4: 132-144.
  3. Atefi, A., Shadparvar, A.A. and Ghavi Hossein‐Zadeh, N. 2018. Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods. Iranian Journal of Applied Animal Science. 8(1): 43-52.
  4. Azevedo, C.F., de Resende, M.D.V., Silva, F.F. and Viana, J.M.S. 2015. Ridge, Lasso and Bayesian additivedominance genomic models. BMC Genetics. 16: 150-118.
  5. Cockerham, C.C. 1954. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics Research. 39(6): 859-882.
  6. De los Campos, G., Gianola, D. and Rosa, G.J.M. 2009a. Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. Journal of Animal Science. 87: 1883-1887.
  7. De los Campos, G., Hickey, J.M., Pong-Wong, R., Daetwyler, H.D. and Callus, M.P.L. 2012. Whole genome regression and prediction methods applied to plant and animal breeding. Genetics. 193: 327-45.
  8. De los Campos, G., Naya, H., Gianola, D., Crossa, J. and Legarra, A. 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics Research. 182: 375-385.
  9. Dehnavi, E., Mahyari, S.A., Schenkel, F.S. and Sargolzaei, M. 2018. The effect of using cow genomic information on accuracy and bias of genomic breeding values in a simulated Holstein dairy cattle population. Journal of Dairy Science. 101(6): 5166-5176.
  10. Fang, M., Jiang, D., Li, D., Yang, R., Fu, W. and Pu, L. 2012. Improved LASSO priors for shrinkage quantitative trait loci mapping. Theoretical and Applied Genetics Research. 124: 1315-24.
  11. Filho, J.E.A, Guimarães, J.F.R., Silva, F.F., Resende, M.D.V., Muñoz, P., Kirst, M. and Júnior, M. F.R.R. 2019. Genomic prediction of additive and non-additive effects using genetic markers and pedigrees. . Journal of Genomic Prediction. 9: 2739-2748.
  12. Goddard, M.E. and Hayes, B.J. 2007. Genomic selection. Journal of Animal Breeding and Genetic.124: 323-330.
  13. Habier, D., Fernando, R.L. and Dekkers, J.C.M. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics Research. 177: 2389-2397.
  14. Habier, D., Fernando, R.L., Kizilkaya, K. and Garrick, D.J. 2011. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics. 12: 186.
  15. Hastie, T. and Qian, J. 2016. Glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. https://CRAN.R-project.org/package=glmnet.
  16. Hayes, B.J., Bowman, P.J., Chamberlain, A.J. and Goddard, M.E. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science. 92: 433-443.
  17. Heffner, E.L., Lorenz, A.J., Jannink, J. and Sorrells, M.E. 2010. Plant breeding with genomic selection: Gain per unit time and cost. Crop Science. 50: 1681-1690.
  18. Hu, G., Gu, W., Cheng, L. and Wang, B. 2019. Genomic prediction and variance component estimation for carcass fat content in rainbow trout using SNP markers. World Aquaculture Socitety. 51: 501-511.
  19. Huang, A. and Liu, D. 2016. EBglmnet: Empirical Bayesian Lasso and Elastic Net Methods for Generalized Linear Models. https://CRAN.R-project.org/package=EBglmnet.
  20. Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A. and Heckerman, D. 2008. Efficient control of population structure in model organism association mapping. Genetics. 178: 1709-1723.
  21. Kang, M., Zhang, C., Chun, H.W., Ding, C. and Liu, C. 2015. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways. Bioinformatics. 31: 656–664.
  22. Legarra, A., Ricard, A. and Filangi, O. 2011. GS3: genomic selection, Gibbs Sampling, Gauss Seidel (and BayesCπ). http://genoweb.toulouse.inrafr/~alegarra/gs3_folde/.
  23. Legarra, A., Robert-Granie, C., Croiseau, P., Guillaume, F. and Fritz, S. 2011. Improved LASSO for genomic selection. Genetics Research. 93: 77-87.
  24. Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F., Fritz, S. and Ducrocq, V. 2010. Aptitude of Bayesian lasso for genomic selection. In: 9. World Congress on Genetics Applied to Livestock Production (p. 1-4). Presented at 9. World Congress on Genetics Applied to Livestock Production, Leipzig, DEU (2010-08-01-2010-08-06).
  25. Lorenz, A.J., Smith, K.P. and Jannink, J.L. 2012. Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Science. 52: 1609–1621.
  26. Luan, T., Woolliams, J.A., Lien, S., Kent, M., Svendsen, M. and Meuwissen, T.H. 2009. The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation. Genetics Research. 183: 1119-1126.
  27. MacLeod, I.M., Hayes, B.J., Savin, K., Chamberlain, A.J., McPartlan, H. and Goddard, M.E. 2010. Power of dense bovine single nucleotide polymorphisms (SNPs) for genome scans to detect and position quantitative trait loci (QTL). Journal of Animal Breeding and Genetics. 127: 133-142.
  28. Mahdavi, M., Dashab, G.R., Vafaya Valleh, M., Rokouei, M. and Sargolzaei, M. 2018. Genomic evaluation and variance component estimation of additive and dominance effects using single nucleotide polymorphism markers in heterogeneous stock mice. Czech Journal of Animal Science. 63 (12): 492-506.
  29. Melchinger, A.E., Utz, H.F., Piepho, H.P., Zeng, Z.B. and Schön, C.C. 2007. The Role of epistasis in the manifestation of heterosis: A systems-oriented approach. Genetics Research. 177(3): 1815-1825.
  30. Meuwissen, T.H. 2003. Genomic selection: The future of marker assisted selection and animal breeding. In Marker – assisted selection: a fast track to increase genetic gain in plant and animal breeding? Session II: MAS in animals. 54-59.
  31. Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics Research. 157: 1819–1829.
  32. Momen, M., Mehrgardi, A.A., Sheikhi, A., Kranis, A., Tusell, L., Morota, G., Rosa, G.J.M. and Gianola, D. 2018. Predictive ability of genome-assisted statistical models under various forms of gene action. Scientific Reports. 8: 12309.
  33. Muñoz, P.R., Resende, J.M.F.R., Gezan, S.A., Resende, M.D.V., de los Campos, G. and Kirst. M. 2014. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics Research. 198: 1759–68.
  34. Park, T. and Casella, G. 2008. The Bayesian Lasso. Journal of the American Statistical Association. 103: 681-686.
  35. Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., Dreisigacker, S., Crossa, J., Sanchez-Villeda, H., Sorells, M. and Jannink, J.L. 2012. Genomic selection in wheat breeding using genotyping-by-sequencing. The Plant Genome Research. 5: 103–113.
  36. R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  37. Resende, M.F R, Muñoz, P., Resende, M.D.V., Garrick, D.J., Fernando, R.L., Davis, M.J., Jokela, E.J., Martin, T.A., Peter, G.F. and Kirst, M. 2012. Accuracy of genomic selection methods in a standard data set of Loblolly Pine (Pinus taeda). Genetics Research. 190: 1503–1510.
  38. Sanna, S., Jackson, A.U., Nagaraja, R., Willer, C.J., Chen, W.M., Bonnycastle, L.L., Shen, H., Timpson, N., Lettre, G., Usala, G., Chines, P.S., Stringham, H.M., Scott, L.J., Dei, M., Lai, S., Albai, G., Crisponi, L., Naitza, S., Doheny, K.F., Pugh, E.W., Ben-Shlomo, Y., Ebrahim, S.H., Lawlor, D.A., Bergman, R.N., Watanabe, R.M., Uda, M., Tuomilehto, J., Collins, F.S., Smith, G.S., Boerwinkle, E., Cao, A., Boehnke, M., Abecasis, G.R. and Mohlke K.L. 2008. Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genetics Research. 40: 198–203.
  39. Sargolzaei, M. and Schenkel, F.S. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics. 25: 680-681. http://www.aps.uoguelph.ca/~msargol/qmsim/
  40. Schaeffer, L.R. 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics. 123: 218-223.
  41. Song, H., Li, L., Zhang, Q., Zhang, S. and Ding, X. 2018. Accuracy and bias of genomic prediction with different de-regression methods. Animal. 12(6): 1111-1117.
  42. Stich, B., Mohring, J., Piepho, H.P., Heckenberger, M., Buckler, E.S. and Melchinger, A.E. 2008. Comparison of mixed-model approaches for association mapping. Genetics Research. 178: 1745-1754.
  43. Su, G., Christensen, O.F., Ostersen, T., Henryon, M. and Lund, M.S. 2012. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PloS One. 7: 45293Pp.
  44. Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B. 58: 267-288.
  45. Van Raden, P.M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science. 91: 4414-4423.
  46. VanRaden, P., Van Tassell, C., Wiggans, G., Sonstegard, T., Schnabel, R., Taylor, J. and Schenkel, F. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science. 92: 16-24.
  47. Villumsen, T.M., Janss, L. and Lund, M.S. The importance of haplotype length and heritability using genomic selection in dairy cattle. Journal of Animal Breeding and Genetics. 126: 3‐13.
  48. Waldmann, P. 2001. Additive and non-additive geneticarchitecture of two different-sized populations of Scabiosa canescens. Heredity. 86: 648- 657.
  49. Xu, S. 2007. An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometric. 63: 513-521.
  50. Xu, S. 2013. Mapping quantitative trait loci by controlling polygenic background effects. Genetics Research. 195(4): 1209-1222.
  51. Zhang, Y.M, Jia, Z., Jim, M. and Dunwell, J.M. 2019. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science. 10: 1664-462.
  52. Zhou, G., Chen, Y., Yao, W., Zhang, C. and Xie, W. 2012. Genetic composition of yield heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the USA. 109: 15847–15852.