تأثیر منابع روی بر پروتئین میکروبی، ایمنوگلوبولین‌ها (M و A)، و فراسنجه‌های نیتروژنی خون گوساله‌های هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

2 استادیار تغذیه نشخوارکنندگان، عضو هیأت علمی گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران.

3 استاد موسسه تحقیقات علوم دامی، کرج

چکیده

سابقه و هدف: روی در موارد زیادی مانند فعالیت میکروبی شکمبه، ایمنی و متابولیت‌های خون نقش دارد، اما اطلاعات کافی درباره تأثیر شکل‌های نانو و آلی مکمل روی بر تولید پروتئین میکروبی در شکمبه و صفات ایمنی در گوساله وجود ندارد. بنابراین، این پژوهش با هدف بررسی تأثیر کاربرد نانواکسید روی و متیونین روی به جای اکسید روی (در سطح برابر یا دو برابر توصیه NRC، 2001) بر مشتقات پورینی ادرار، پروتئین میکروبی، ایمنوگلوبولین‌ها و ترکیبات نیتروژنی خون گوساله‌ها در دوره پیش و پس از شیرگیری انجام شد.
مواد و روش‌ها: 60 رأس گوساله شیرخوار هلشتاین در قالب طرح کاملاً تصادفی در یکی از شش گروه آزمایشی (10 تکرار) قرار گرفتند. تیمارهای آزمایشی عبارت بودند از: جیره حاوی 1- اکسید روی در سطح توصیه NRC، 2- متیونین روی در سطح توصیه NRC، 3- نانواکسید روی در سطح توصیه NRC، 4- اکسید روی دو برابر توصیه NRC، 5- متیونین روی دو برابر توصیه NRC، و 6- نانواکسید روی دو برابر توصیه NRC. طی سنین هفت تا 30 روزگی، گوساله‌ها با شیر و کنسانتره آغازین در قالب تیمارهای بالا تغذیه شدند. از سن 31 تا 70 روزگی، شیر و مخلوط یونجه-کنسانتره آغازین (نسبت 10 به 90) در اختیار حیوانات قرار گرفت. در سن 70 روزگی از شیرگیری انجام شد و در دوره پس از شیرگیری (71 تا 100 روزگی)، گوساله‌ها صرفاً با جیره‌های آزمایشی (نسبت یونجه و کنسانتره آغازین 20 به 80) تا حد اشتها تغذیه شدند. مقادیر مشتقات پورینی ادرار، تولید نیتروژن میکروبی، گلوبولین کل، ایمنوگلوبولین‌های M و A، پروتئین کل، آلبومین، نیتروژن اوره‌ای، کراتینین و گلوکز خون در دوره پیش و پس از شیرگیری تعیین گردید و داده‌ها در قالب آزمایش فاکتوریل (2 × 3) با استفاده از رویه MIXED نرم‌افزار SAS (2001) تجزیه شد.
یافته‌ها: مشتقات پورینی ادرار و تولید نیتروژن میکروبی در دوره‌های پیش و پس از شیرگیری تحت تأثیر جایگزینی اکسید روی با نانواکسید روی و متیونین روی قرار نگرفت. شکل شیمیایی روی تأثیر معنی‌داری بر غلظت گلوبولین کل و ایمنوگلوبولین‌های M و A خون نداشت. پروتئین کل، آلبومین، نیتروژن اوره‌ای، کراتینین و گلوکز خون بین گوساله‌های تغذیه‌شده با مکمل‌های روی معدنی، نانو یا آلی یکسان بود. به‌علاوه، افزایش غلظت روی در جیره تأثیری بر مشتقات پورینی ادرار، تولید نیتروژن میکروبی، گلوبولین کل، ایمنوگلوبولین‌های M و A، پروتئین کل، آلبومین، نیتروژن اوره‌ای، کراتینین و گلوکز خون نداشت.
نتیجه‌گیری: مصرف نانواکسید روی و متیونین روی به جای اکسید روی و همچنین افزایش سطح روی در جیره، تأثیری بر تولید پروتئین میکروبی، ایمنوگلوبولین‌های M و A، ترکیبات نیتروژنی و گلوکز خون در گوساله‌ها ندارد. بنابراین، تغذیه شکل مرسوم روی معدنی (اکسید روی) در سطح توصیه NRC برای تأمین نیاز گوساله‌های هلشتاین در دوره‌های پیش و پس از شیرگیری کافی است و منابع دیگر توصیه نمی‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Zn sources on microbial protein, immunoglobulins (M and A) and blood N parameters of Holstein calves

نویسندگان [English]

  • Mojtaba Abdollahi 1
  • Javad Rezaei 2
  • Hassan Fazaeli 3
1 Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran
2 Academic Staff at Dept. of Animal Science (Ruminant Nutrition), Faculty of Agriculture, Tarbiat Modares University
3 Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj
چکیده [English]

Background and objectives: Zinc has a role in many cases such as rumen microbial activity, immunity, and blood metabolites. But, there is no sufficient information on the effect of nano and organic Zn supplements on microbial protein synthesis and immunity variables in Holstein calves. Thus, this study was conducted to assess the effect of using nano-ZnO and Zn-methionine instead of ZnO (equal to or twice NRC 2001-recommended level) on urinary purine derivatives, microbial protein, immunoglobulins and nitrogenous compounds of the blood in pre- and post-weaning calves.
Materials and methods: Sixty suckling Holstein calves were assigned into one of the 6 experimental groups (10 replications) in a completely randomized design. The experimental treatments were the diets containing: 1- ZnO equal to NRC recommendation, 2- Zn-methionine equal to NRC recommendation, 3- nano-ZnO equal to NRC recommendation, 4- ZnO twice NRC recommendation, 5- Zn-methionine twice NRC recommendation, and 6- nano-ZnO twice NRC recommendation. During 7 to 30 days of age, the calves were fed with milk and starter concentrate according to the above treatments. From days 31 to 70, milk and mixed alfalfa-starter (at the ratio of 10:90) were provided for the calves. Weaning was done at 70 days of age and during post-weaning period (71 to 100 days of age), the calves were freely fed with experimental diets (alfalfa and starter concentrate at the ratio of 20:80). During pre- and post-weaning periods, the urinary purine derivatives, microbial N synthesis, total globulin, IgM, IgG, total protein, albumin, urea-N, creatinine and glucose of the blood were determined. Data were analyzed in a factorial experiment (3×2) using PROC MIXED of SAS (2001).
Results: Urinary purine derivatives and microbial N synthesis were not affected by replacing ZnO with nano-ZnO and Zn-methionine during pre- and post-weaning periods. Zinc chemical form had no significant effect on the blood concentrations of total globulin, IgM and IgA. Total protein, albumin, urea-N, creatinine and glucose in the blood of the calves fed with inorganic, nano or organic Zn supplements were the same. Moreover, increasing Zn level in the diet had no effect on urinary purine derivatives, microbial N synthesis, total globulin, IgM, IgA, total protein, urea-N, creatinine and glucose.
Conclusion: Using nano-ZnO and Zn-methionine instead of ZnO and also the increasing dietary Zn level had no effect on microbial protein synthesis, IgM, IgA, nitrogenous compounds and glucose in the blood of the calves. Thus, feeding the conventional inorganic Zn source (ZnO) at the NRC-recommended level was sufficient to supply the calves’ requirement during pre- and post-weaning periods and the other sources are not recommended.

کلیدواژه‌ها [English]

  • Calves
  • Zn-methionine
  • Nano-ZnO
  • Immunity
  • Microbial protein
1.Aliarabi, H., Fadayifar, A., Tabatabaei, M.M., Zamani, P., Bahari, A., Farahavar, A., and Dezfoulian, A.H. 2015. Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biological Trace Element Research. 168(1): 82-90.
2.Alkaladi, A., Abdelazim, A.M., and Afifi, M. 2014. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences. 15(2): 2015-2023.
3.Ao, T., Pierce, J.L., Power, R., Pescatore, A.J., Cantor, A.H., Dawson, K.A., and Ford, M.J. 2009. Effect of different forms of zinc and copper on the performance and tissue mineral content of chicks. Journal of Poultry Science. 88: 2171-2175.
4.Azizzadeh, M., Mohri, M., and Seifi, H.A. 2005. Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves. Comparative Clinical Pathology. 14: 67-71.
5.Chen, J., Wang, W., and Wang, Z. 2011. Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese Journal of Animal Nutrition. 8: 023.
6.Chen, X.B., and Gomes, J.M. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives–an overview of the technical details. Rowett Research Institute, Bucks-burn, Aberdeen, UK.
7.Cole, N.A., and Todd, R.W. 2008. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants. Journal of Animal Science. 86: E318-E333 E. Suppl.
8.Cope, C.M., Mackenzie, A.M., Wilde, D. and Sinclair, L.A. 2009. Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science. 92: 2128-2135.
9.Droke, E.A., and Spears, J.W. 1993. In vitro and in vivo immunological measurements in growing lambs fed diets deficient, marginal or adequate in zinc. Journal of Nutritional Immunology. 2(1): 71-90.
10.Droke, E.A., Gengelbach, G.P., and Spears, J.W. 1998. Influence of level and source (inorganic vs. organic) of zinc supplementation on immune function in growing lambs. Asian-Australas. Journal of Animal Science. 11: 139-144.
11.El-Nour Hayat, H.M., Abdel-Rahman Howida, M.A., and El-Wakeel Safaa, A. 2010. Effect of zinc methionine on reproductive performance, kids performance, mineral profile and milk quality in early lactation in Baladi goats. World Applied Sciences Journal. 9: 275-282.
12.Fadayifar, A., Aliarabi, H., Tabatabaei, M.M., Bahari, A., Malecki, M., and Dezfoulian, A.H. 2012. Improvement in lamb performance on barley based diet supplemented with zinc. Livestock Science. 144: 285-289.
13.Farzami, B., Golestani, A., and Ajami Khiavi, I. 2004. Study of the effect of Zn2+, W6+ and V5+ on insulin secretion and glukokinase activation of pancreatic islets obtained from normal and diabetic rats. Iranian Journal of Diabetes and Metabolism. 3(2): 97-105.
14.Formigoni, A., Fustini, M., Archetti, L., Emanuele, S., Charles Sniffen, C., and Biagia, G. 2011. Effects of an organic source of copper, manganese and zinc on dairy cattle productive performance, health status and fertility. Journal of Animal Feed Science and Technology. 164: 191-198.
15.Fouda, T.A., Youssef, M.A., and El-Deeb, W.M. 2011. Correlation between zinc deficiency and immune status of sheep. Veterinary Research. 4: 50-55.
16.Garg, A.K., Mudgal, V., and Dass, R.S. 2008. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Journal of Animal Feed Science and Technology. 144: 82-96.
17.Gressley, T.F. 2009. Zinc, copper, manganese, and selenium in dairy cattle rations. P 65–71. In: N.G. Zimmermann (eds), Proceedings of 7th annual mid-atlantic nutrition conference, Univercity of Maryland, College Park, Maryland.
18.Hudson, B.P., Dozier, W.A., Wilson, J.L., Sander, J.E., and Ward, T.L. 2004. Reproductive performance and immune status of caged broiler breeder hens provided diets supplemented with either inorganic or organic sources of zinc from hatching to 65 wk of age. Journal of Applied Poultry Research. 13: 349-359.
19.Kaur, R., Garcia, S.C., Fulkerson, W.J., and Barchia, I.M. 2010. Utilisation of forage rape (Brassica napus) and Persian clover (Trifolium resupinatum) diets by sheep: effects on whole tract digestibility and rumen parameters. Animal Production Science. 50: 59-67
20.Kinal, S., Korniewicz, A., Jamroz, D., Zieminski, R., and Slupczynska, M. 2005. Dietary effects of zinc, copper and manganese chelates and sulphates on dairy cows. Journal of Food, Agriculture and Environment. 3(1): 168-172.
21.Kincaid, R.L., Chew, B.P., and Cronrath, J.D. 1997. Zinc oxide and amino acids as sources of dietary zinc for calves: Effects on uptake and immunity. Journal of Dairy Science. 80: 1381-1388.
22.Koch, J., Neal, E.A., Schlott, M.J., Garcia-Shelton, Y., Chan, M.F., Weaver, K.E., and Cello, J.P. 1996. Serum zinc and protein levels: lack of a correlation in hospitalized with aids. Nutrition. 12: 511-514.
23.Li, M.Z., Huang, J.T., Tsai, Y.H., Mao, S.Y., Fu, C.M., and Lien, T.F. 2016. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Journal of Animal Science. 87(11): 1379-1385.
24.Lina, T., Jianyang, J., Fenghua, Z., Huiying, R., and Wenli, L. 2009. Effect of Nano-zinc oxide on the production and dressing performance of broiler. Chinese Agricultural Science Bulletin. 2: 1-5 (Category Index: S831).
25.Malakouti, M.J. 2007. Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology. 1(1): 1-12.
26.Mandal, G.P., Dass, R.S., Isore, D.P., Garg, A.K., and Ram, G.C. 2007. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus × Bos taurus) bulls. Journal of Animal Feed Science and Technology. 138: 1-12.
27.Mandal, G.P., Roy A., Samanta, I., and Biswas, P. 2011. Influence of dietary zinc and its sources on growth, body zinc deposition and immunity in broiler chicks. Indian Journal of Animal Nutrition. 28(4): 432-436.
28.McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A., and Wilkinson, R.G. 2011. Animal nutrition. 7th ed. Prentice Hall, Essex. 692 Pp.
29.Mohamed, A.A. 2001. Effect of dietary zinc supplementation on performance and blood characteristics of growing Nubian kids. MSc. Thesis, University of Khartoum, Sudan.
30.Mojabi, A. 2011. Veterinary clinical biochemistry. 2nd ed. Noorbakhsh Publishing, Tehran. 511 Pp. (In Persian)
31.Mousa, Kh.M.M., and EL-Sheikh, S.M. 2004. Effect of different levels of zinc supplementation on utilization of non-protein nitrogen and production performance of buffalo-calves. Journal of Agricultural Science (Mansoura Univercity). 29(7): 3779-3793.
32.Mukhtar, N., Sarwar, M., Nisa, M.U., and Sheikh, M.A. 2010. Growth response of growing lambs fed on concentrate with or without ionophores and probiotics. International Journal of Agriculture and Biology. 12: 734-738.
33.Nagalakshmi, D., Rao, K.S., Kumari, G.A., Sridhar, K., and Satyanarayana, M. 2016. Comparative evaluation of organic zinc supplementation as proteinate with inorganic zinc in buffalo heifers on health and immunity. Indian Journal of Animal Science. 86(3): 322-328.
34.Nassiri Moghaddam, H., and Jahanian, R. 2009. Immunological responses of broiler chicks can be modulated by dietary supplementation of zinc-methionine in place of inorganic zinc sources. Asian-Australasian Journal of Animal Science. 22: 396-403.
35.Nayeri, A., Upah, N.C., Sucu, E., Sanz-Fernandez, M.V., DeFrain, J.M., Gorden, P.J., and Baumgard, L.H. 2014. Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. Journal of Dairy Science. 97(7): 4392-4404.
36.NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. National Academy Press, Washington, DC. 293 p.
37.Radostits, O.M., Gay, C.C., Blood, D.C., and Hinchliffe, K.W. 2007. Veterinary Medicine. A textbook of the diseases of cattle, sheep, goats and horses. 10th ed. Saunders, W.B. Ltd., London, UK. 2156 Pp.
38.Roshanzamir, H. 2016. Effects of organic or inorganic sources of Mn, Zn and Cu, equal to or higher than NRC guideline, on performance, health and fertility of dairy cows. MSc Thesis in Animal Nutrition. Tarbiat Modares University. Tehran. (In persion)
39.SAS. 2001. Statistical analysis system. 8.2 user’s guide, SAS Institute, Cary, North Carolina.
40.Shakweer, I.M.E., EL-Mekass, A.A.M., and EL-Nahas, H.M. 2006. Effect of supplemental zinc methionine concentrations on digestibility, feed efficiency and some ruminal and blood parameters and performance of Friesian calves. Journal of Agricultural Science (Mansoura University). 31(8): 4935-4935.
41.Sobhanirad, S., and Naserian, A.A. 2012. Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Journal of Animal Feed Science and Technology. 177: 242-246.
42.Suttle, N.F. 2010. The mineral nutrition of livestock. 4rd ed. CABI Publishing, New York. 579 Pp.
43.Swain, P.S., Rajendran, D., Rao, S.B.N., and Dominic, G. 2015. Preparation and effects of nano mineral particle feeding in livestock: A review: Veterinary World. 8(7): 888-891.
44.Swain, P.S., Rao, S.B.N., Rajendran, D., Dominic, G., and Selvaraju, S. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review: Animal Nutrition. 2: 134-141.
45.Wu, G. 2018. Principles of animal nutrition. 1th ed. Taylor & Francis Group, LLC, Boca Raton, FL. 272 Pp.
46.Yang, J.Y., Seo, J., Kim, H.J., Seo, S., and Ha, J.K. 2010. Nutrient synchrony: is it a suitable strategy to improve nitrogen utilization and animal performance. Asian-Australasian Journal of Animal Science. 23(7): 972-979.
47.Zaboli, Kh., Aliarabi, H., Bahari, A.A., and Abbasalipourkabir, R. 2013a. Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids. Journal of Pharmaceutic. Health Science. 2(1): 19-26.
48.Zaboli, Kh., Aliarabi, H., Tabatabai, M.M., Bahari, A.A., and Zarei ghane, Z. 2013b. Effect of zinc oxide nano particle and zinc oxide on performance and some blood parameters in male Markhoz goat kids. Animal Production Research. 2(2): 29-41. (In persion)
49.Zaboli, Kh., and Aliarabi, H. 2013. Effect of different levels of zinc oxide nano particles and zinc oxide on some ruminal parameters by in vitro and in vivo methods. Animal Production Research. 2(1): 1-14. (In persion)
50.Zhao, J., Shirley, R.B., Vazque-Anon, M., Dibner, J., Richards, J.D., Fishe, P., Hampton, T., Christensen, K.D., Allard, J.P., and Giesen, A.F. 2010. Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. Journal of Applied Poultry Research. 19: 365-372.
51.Zhisheng, C.J.W.W.W. 2011. Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese Journal of Animal Nutrition. 8: 023.