تاثیر مکمل‌سازی شکل گلایسینات برخی از عناصر کم‌مصرف بر وضعیت آنتی‌اکسیدانی و التهابی، پاسخ ایمنی و سلامت گوساله‌های شیرخوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران،

2 گروه علوم دامی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 گروه علوم دامی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج

چکیده

چکیده
سابقه و هدف: گوساله‌های شیرخوار در بدو تولد با چالش‌هایی نظیر عدم تعادل بین اکسیدان‌ها و آنتی‌اکسیدان‌ها و همچنین سامانه ایمنی تکامل نیافته مواجه هستند. مواد معدنی کم‌مصرف ریز مغذی‌هایی هستند که در فرآیندهای فیزیولوژیکی متعدد مانند سوخت و ساز اکسیداتیو و سامانه ایمنی نقش فعالی داشته و برای عملکرد بهینه سلول‌ها و بافت‌ها و سلامت حیوانات ضروری هستند. نوع منبع و فرآهمی زیستی مواد معدنی کم‌مصرف ممکن است منجر به بهبود عملکرد رشد و سلامت حیوانات شود. در پژوهش حاضر اثر مکمل‌سازی شکل گلایسینات عناصر کم‌مصرف مس، آهن، روی و منگنز بر وضعیت آنتی‌اکسیدانی و التهابی، پاسخ ایمنی، فراسنجه‌های خونی و سلامت گوساله‌های شیرخوار هلشتاین بررسی شد.
مواد و روش: تعداد 20 رأس گوساله سه ‌روزه نژاد هلشتاین (10 رأس نر، 10 رأس ماده) با میانگین وزن تولد 5 ± 40 کیلوگرم به-طور تصادفی به دو گروه تیماری و 10 رأس گوساله در هر تیمار تقسیم شدند. تیمارهای آزمایشی شامل گروه شاهد دریافت کننده شیر و خوراک آغازین پایه به‌همراه پروتئین آب پنیر (به‌عنوان حامل عناصر کم‌مصرف) و گروه تیمار دریافت کننده شیر حاوی 6، 5/1، 15 و 6 قسمت در میلیون روی، مس، آهن و منگنز به ترتیب + جیره آغازین پایه حاوی 40، 10، 100 و 40 قسمت در میلیون روی، مس، آهن و منگنز به شکل کمپلکس گلایسینات بود. گوساله‌ها در63 روزگی از شیر گرفته شدند. جهت ارزیابی وضعیت آنتی‌اکسیدانی (غلظت آنزیم سوپراکسید دیسموتاز، فعالیت آنزیم کاتالاز، ظرفیت تام آنتی‌اکسیدانی و غلظت مالون‌دی‌آلدیید) و التهابی (غلظت سرم آمیلویید A و هاپتوگلوبین)، پاسخ ایمنی خونی (غلظت ایمونوگلوبولین G سرم علیه آلبومین سفیده تخم‌مرغ) و فراسنجه‌های خونی (فراسنجه‌های خون‌شناسی و غلظت هورمون‌های تری‌یدوتایرونین، تیروکسین و کورتیزول)، نمونه‌های خون در روزهای صفر، 21، 42 و 63 از طریق سیاهرگ گردنی جمع‌آوری شدند. پاسخ ایمنی سلولی با تغییرات ضخامت پوست ناحیه تزریق فایتوهماگلوتنین در انتهای آزمایش اندازه-گیری شد. ارزیابی وضعیت سلامت، نمره چشم، نمره بینی و نمره مدفوع به صورت روزانه و دمای مقعد در انتهای آزمایش اندازه‌گیری و ثبت شد.
یافته‌ها: نتایج نشان داد که در گوساله‌های دریافت کننده شکل آلی عناصر کم‌مصرف تعداد گلبول‌های قرمز، مقدار هموگلوبین، درصد هماتوکریت و نوتروفیل، غلظت آنزیم سوپراکسید دیسموتاز و دمای مقعد نسبت به گروه شاهد بالاتر و درصد لنفوسیت، غلظت مالون‌دی-آلدیید و امتیاز چشم پایین‌تر بود) 05/0(P <. گوساله‌هایی که مکمل گلایسینات عناصر کم‌مصرف را دریافت کردند، نسبت به گوساله‌های گروه شاهد تمایل به کاهش غلظت سرم آمیلویید A داشتند. علاوه‌بر این گوساله‌های دریافت کننده شکل آلی عناصر کم‌مصرف در روز 21 مطالعه در مقایسه با گوساله‌های گروه شاهد فعالیت آنزیم کاتالاز و ظرفیت تام آنتی‌اکسیدانی بالاتری داشتند) 05/0(P <. طی این آزمایش، مکمل گلایسینات عناصر کم‌مصرف تغییری در پاسخ سامانه ایمنی و فراسنجه‌های هورمونی گوساله‌های شیرخوار ایجاد نکرد.
نتیجه‌گیری: به‌طور کلی، افزودن شکل گلایسینات عناصر کم‌مصرف مس، آهن، روی و منگنز در مقادیر مذکور به شیر و جیره آغازین سبب بهبود برخی فراسنجه‌های خونی و وضعیت آنتی‌اکسیدانی گوساله‌های شیرخوار شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of supplementation with glycinate form of some trace minerals on antioxidant and inflammatory status, immune response, and health in suckling calves

نویسندگان [English]

  • Mohammad Hossein Moazeni zadeh 1
  • Armin Towhidi 2
  • Mahdi Zhandi 3
  • kamran rezayazdi 3
1 Department of Animal Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran,
2 Department of Animal Science, faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 Department of Animal Science, faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Abstract
Background and objectives: After birth, neonatal dairy calves are exposured to challenges such as an imbalance between oxidants and antioxidants and immature immune system. Trace minerals are micronutrients that play an important role in many physiological processes, such as oxidative metabolism and immunity, and are essential for the proper function of cells and tissues and also the health of animals. Source and bioavailability of trace minerals may also lead to improved growth performance and health status in livestock. Here, the effects of supplementation of copper, iron, zinc and manganese glycinate on antioxidant and inflammatory status, immune response, hematological and hormonal parameters and Health status in Holstein suckling calves were investigated.
Materials and methods: Twenty three-day-old Holstein calves (10 males and 10 females with average birth weight of 40 ± 5 kg) were randomly assigned to 2 treatments with 10 calves per treatment. Treatments were as follows: control group receiving milk and basal starter diet + whey protein (as a carrier of trace elements) and organic treatment group receiving milk containing 1.5, 15, 6 and 6 ppm of copper, iron, zinc and manganese respectively + basal starter diet containing 10, 100, 40 and 40 ppm of copper, iron, zinc and manganese from glycinate form. Calves were weaned on day 63. In order to evaluate antioxidant status (superoxide dismutase enzyme concentration, catalase enzyme activity, total antioxidant capacity and malondialdehyde concentration), inflammatory status (serum amyloid A and haptoglobin concentration), humoral immune response (serum immunoglobulin G concentration against ovalbumin), hematological parameters, and hormonal parameters (T3, T4 and cortisol concentration), blood samples were collected on days 0, 21, 42 and 63 through the jugular vein. The cellular immune response was measured by changes in skinfold thickness of the phytohemagglutinin injection site at the end of the experiment. Health status, eye score, nasal score and fecal score were recorded daily and rectal temperature were measured at the end of the experiment.
Results: Results showed that organic trace mineral supplemented calves had higher red blood cells, hemoglobin, hematocrit and neutrophil percentage, higher superoxide dismutase activity and rectal temperature and lower lymphocyte, lower malondialdehyde concentration and lower eye score than control calves (P<0.05). Calves receiving glycinate trace mineral tended to have lower serum amyloid A than control group calves. In addition, organic trace mineral supplemented calves had higher total antioxidant capacity and catalase activity at d 21 of the study compared to control calves (P<0.05). in the current study glycinate trace mineral supplementation could not change immune response and hormonal parameters in suckling calves.
Conclusion: In general, the supplemental feeding of copper, iron, zinc and manganese glycinate form in mentioned levels improved antioxidant status and some hematological parameters in suckling calves.

کلیدواژه‌ها [English]

  • Trace elements
  • Suckling calves
  • Organic supplementation
 Akbari, M. R., Kermanshahi, H., Moghaddam, H. N., Moussavi, A. H., & Afshari, J. T. (2008). Effects of wheat-soybean meal based diet supplementation with vitamin A, vitamin E and zinc on blood cells, organ weights and humoral immune response in broiler chickens.  Journal of Animal and Veterinary Advances, 7(3): 297-304.
Aksu, D. S., Aksu, T., Ozsoy, B., & Baytok, E. (2010). The effects of replacing inorganic with a lower level of organically complexed minerals (Cu, Zn and Mn) in broiler diets on lipid peroxidation and antioxidant defense systems. Asian-Australasian Journal of Animal Sciences, 23(8), 1066-1072.
Aktas, M. S., Kandemir, F. M., Kirbas, A., Hanedan, B., & Aydin, M. A. (2017). Evaluation of oxidative stress in sheep infected with using total antioxidant capacity, total oxidant status, and malondialdehyde level. Journal of Veterinary Research, 61(2): 197-201.
Alimohamady, R., Aliarabi, H., Bruckmaier, R. M., & Christensen, R. G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research, 189: 75-84.
Ao, T., Pierce, J. L., Pescatore, A. J., Cantor, A. H., Dawson, K. A., Ford, M. J., & Paul, M. (2011). Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks. British Poultry Science, 52(4): 466-471.
Arthington, J. D., & Havenga, L. J. (2012). Effect of injectable trace minerals on the humoral immune response to multivalent vaccine administration in beef calves. Journal of Animal Science, 90(6): 1966-1971.
Arthington, J. D., Moriel, P., Martins, P. G. M. A., Lamb, G. C., & Havenga, L. J. (2014). Effects of trace mineral injections on measures of performance and trace mineral status of pre-and postweaned beef calves. Journal of Animal Science, 92(6): 2630-2640.
Asadi, M., Toghdory, A., Ghoorchi, T., & Hatami, M. (2024). The effect of maternal organic manganese supplementation on performance, immunological status, blood biochemical and antioxidant status of Afshari ewes and their newborn lambs in transition period. Journal of Animal Physiology and Animal Nutrition, 108(2), 493-499.
Asadi, M., Toghdory, A., Hatami, M., & Ghassemi Nejad, J. (2022). Milk supplemented with organic iron improves performance, blood hematology, iron metabolism parameters, biochemical and immunological parameters in suckling Dalagh lambs. Animals, 12(4): 510.
Atyabi, N., Gharagozloo, F., & Nassiri, S. M. (2006). The necessity of iron supplementation for normal development of commercially reared suckling calves. Comparative Clinical Pathology, 15: 165-168.
Bai, K., Huang, Q., Zhang, J., He, J., Zhang, L., & Wang, T. (2017). Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry Science, 96(1): 74-82.
Bazhora, I. I., Shtefan, E. E., & Timoshevskiĭ, V. N. (1974). The effect of microelements--copper, manganese and cobalt--on the antibody forming function of lymphoid tissue. Mikrobiolohichnyi zhurnal, 36(6): 771-776.
Bonaventura, P., Benedetti, G., Albarède, F., & Miossec, P. (2015). Zinc and its role in immunity and inflammation. Autoimmunity reviews, 14(4): 277-285.
Bonham, M., O'Connor, J. M., Hannigan, B. M., & Strain, J. J. (2002). The immune system as a physiological indicator of marginal copper status? British Journal of Nutrition, 87(5): 393-403.
Burkett, J. L., K. J. Stalder, W. J. Powers, K. Bregendahl, J. L. Pierce, T. J. Baas, T. Bailey, &. Shafer, B. L. (2009). Effect of inorganic and organic trace mineral supplementation on the performance, carcass characteristics, and fecal mineral excretion of phase-fed, grow-finish swine. Asian-Australasian Journal of Animal Sciences, 22(9): 1279-1287.
Caramalac, L. S., Moriel, P., Ranches, J., Silva, G. M., & Arthington, J. D. (2021). Comparison of injectable trace minerals vs. adjuvant on measures of innate and humoral immune responses of beef heifers. Livestock Science, 251: 104665.
Chang, M. N., Wei, J. Y., Hao, L. Y., Ma, F. T., Li, H. Y., Zhao, S. G., & Sun, P. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. Journal of Dairy Science, 103(7): 6100-6113.
Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanidou, M. E. (2012). Zinc and human health: an update. Archives of Toxicology, 86: 521-534.
Cummins, J. M., & Rosenquist, B. D. (1980). Protection of calves against rhinovirus infection by nasal secretion interferon induced by infectious bovine rhinotracheitis virus. American Journal of Veterinary Research, 41(2): 161-165.
Dang, A.K., Prasad, S., De, K., Pal, S., Mukherjee, J., Sandeep, I.V.R., Mutoni, G., Pathan, M.M., Jamwal, M., Kapila, S. and Kapila, R. (2013). Effect of supplementation of vitamin E, copper and zinc on the in vitro phagocytic activity and lymphocyte proliferation index of peripartum Sahiwal (Bos indicus) cows. Journal of Animal Physiology and Animal Nutrition, 97(2): 315-321.
Dardenne, M. (2002). Zinc and immune function. European Journal of Clinical Nutrition, 56(3): S20-S23.
De Beer, F. C., Fagan, E., Hughes, G. R. V., Mallya, R. K., Lanham, J. G., & Pepys, M. B. (1982). Serum amyloid-A protein concentration in inflammatory diseases and its relationship to the incidence of reactive systemic amyloidosis. The Lancet, 320(8292): 231-234.
Devirgiliis, C., Zalewski, P. D., Perozzi, G., & Murgia, C. (2007). Zinc fluxes and zinc transporter genes in chronic diseases. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 622(1-2): 84-93.
Dorton, K. L., Engle, T. E., & Enns, R. M. (2006). Effects of trace mineral supplementation and source, 30 days post-weaning and 28 days post receiving, on performance and health of feeder cattle. Asian-Australasian Journal of Animal Sciences, 19(10): 1450-1454.
Dove, C. R., & Ewan, R. C. (1990). Effect of excess dietary copper, iron or zinc on the tocopherol and selenium status of growing pigs. Journal of Animal Science, 68(8): 2407-2413.
Dresler, S., Illek, J., & Zeman, L. (2016). Effects of organic zinc supplementation in weaned calves. Acta Veterinaria Brno, 85(1): 49-54.
Droke, E. A., Gengelbach, G. P., & Spears, J. W. (1998). Influence of level and source (inorganic vs organic) of zinc supplementation on immune function in growing lambs. Asian-Australasian Journal of Animal Sciences, 11(2): 139-144.
Ebrahimi, M., Towhidi, A., & Nikkhah, A. (2009). Effect of organic selenium (Sel-Plex) on thermometabolism, blood chemical composition and weight gain in Holstein suckling calves. Asian-Australasian Journal of Animal Sciences, 22(7): 984-992.
Eisa, A. M., & Elgebaly, L. S. (2010). Effect of ferrous sulphate on hematological, biochemical and immunological parameters in neonatal calves. Veterinaria Italiana, 46(3): 329-335.
Enjalbert, F., Lebreton, P., & Salat, O. (2006). Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: retrospective study. Journal of Animal Physiology and Animal Nutrition, 90(11‐12): 459-466.
Feng, J. W. Q. M., Ma, W. Q., Niu, H. H., Wu, X. M., Wang, Y., & Feng, J. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research, 133: 203-211.
George, M. H., Nockels, C. F., Stanton, T. L., Johnson, B., Cole, N. A., & Brown, M. A. (1997). Effect of source and amount of zinc, copper, manganese, and cobalt fed to stressed heifers on feedlot performance and immune function. The Professional Animal Scientist, 13(2): 84-89.
Harvey, J. W. (2011). Veterinary hematology: a diagnostic guide and color atlas. Elsevier Health Sciences.
Heidarpour Bami, M., Mohri, M., Seifi, H. A., & Alavi Tabatabaee, A. A. (2008). Effects of parenteral supply of iron and copper on hematology, weight gain, and health in neonatal dairy calves. Veterinary Research Communications, 32: 553-561.
Hess, & Zimmermann. (2004). The effect of micronutrient deficiencies on iodine nutrition and thyroid metabolism. International Journal for Vitamin and Nutrition Research, 74(2): 103-115.
Jarosz, Ł., Marek, A., Grądzki, Z., Kwiecień, M., & Kalinowski, M. (2017). The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens. Research in Veterinary Science, 112: 59-65.
Kegley, E. B., Pass, M. R., Moore, J. C., & Larson, C. K. (2012). Supplemental trace minerals (zinc, copper, manganese, and cobalt) as Availa-4 or inorganic sources for shipping-stressed beef cattle. The Professional Animal Scientist, 28(3): 313-318.
Kincaid, R. L., Chew, B. P., & Cronrath, J. D. (1997). Zinc oxide and amino acids as sources of dietary zinc for calves: effects on uptake and immunity. Journal of Dairy Science, 80(7): 1381-1388.
Kulkarni, R. C., Shrivastava, H. P., Mandal, A. B., Deo, C., Deshpande, K. Y., Singh, R., & Bhanja, S. K. (2011). Assessment of growth performance, immune response and mineral retention in colour broilers as influenced by dietary iron. Animal Nutrition and Feed Technology,11:81-90.
Leeson, S., & Caston, L. (2008). Using minimal supplements of trace minerals as a method of reducing trace mineral content of poultry manure. Animal Feed Science and Technology, 142(3-4): 339-347.
Li, L. L., Gong, Y. J., Zhan, H. Q., Zheng, Y. X., & Zou, X. T. (2019). Effects of dietary Zn-methionine supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. Poultry Science, 98(2): 923-931.
Lipiński, P., Starzyński, R. R., Canonne-Hergaux, F., Tudek, B., Oliński, R., Kowalczyk, P., ... & Zabielski, R. (2010). Benefits and risks of iron supplementation in anemic neonatal pigs. The American Journal of Pathology, 177(3): 1233-1243.
Liu, B., Jiang, J., Lin, G., Yu, D., & Xiong, Y. L. (2019). Upregulation of antioxidant enzymes by organic mineral co-factors to improve oxidative stability and quality attributes of muscle from laying hens. Food Research International, 125: 108575.
Liu, J., Ma, F., Degen, A., & Sun, P. (2023). The effects of zinc supplementation on growth, diarrhea, antioxidant capacity, and immune function in Holstein dairy calves. Animals, 13(15): 2493.
Liu, M. J., Bao, S., Napolitano, J. R., Burris, D. L., Yu, L., Tridandapani, S., & Knoell, D. L. (2014). Zinc regulates the acute phase response and serum amyloid A production in response to sepsis through JAK-STAT3 signaling. PloS one, 9(4): e94934.
Ma, F. T., Wo, Y. Q. L., Shan, Q., Wei, J. Y., Zhao, S. G., & Sun, P. (2020). Zinc-methionine acts as an anti-diarrheal agent by protecting the intestinal epithelial barrier in postnatal Holstein dairy calves. Animal Feed Science and Technology, 270: 114686.
Ma, Y., Huang, Q., Lv, M., Wu, Z., Xie, Z., Han, X., & Wang, Y. (2014). Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets. Biological Trace Element Research, 158: 45-50.
Ma, W. Q., Sun, H., Zhou, Y., Wu, J., & Feng, J. (2012). Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biological Trace Element Research, 149: 204-211.
Malle, E. D. B. F., & De Beer, F. C. (1996). Human serum amyloid A (SAA) protein: a prominent acute‐phase reactant for clinical practice. European Journal of Clinical Investigation, 26(6): 427-435.
Manangi, M. K., Vazques-Anon, M., Richards, J. D., Carter, S., & Knight, C. D. (2015). The impact of feeding supplemental chelated trace minerals on shell quality, tibia breaking strength, and immune response in laying hens. Journal of Applied Poultry Research, 24(3): 316-326.
McAdam, K. P., & Sipe, J. D. (1976). Murine model for human secondary amyloidosis: genetic variability of the acute-phase serum protein SAA response to endotoxins and casein. The Journal of Experimental Medicine, 144(4): 1121-1127.
McGuirk, S. M., & Peek, S. F. (2014). Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Animal Health Research Reviews, 15(2): 145-147.
Meyer, L. A., Durley, A. P., Prohaska, J. R., & Harris, Z. L. (2001). Copper transport and metabolism are normal in aceruloplasminemic mice. Journal of Biological Chemistry, 276(39): 36857-36861.
Mohri, M., Sarrafzadeh, F., Seifi, H. A., & Farzaneh, N. (2004). Effects of oral iron supplementation on some haematological parameters and iron biochemistry in neonatal dairy calves. Comparative Clinical Pathology, 13: 39-42.
Mousavi-Haghshenas, M. A., Hashemzadeh, F., Ghorbani, G. R., Ghasemi, E., Rafiee, H., & Ghaffari, M. H. (2022). Trace minerals source in calf starters interacts with birth weights to affect growth performance. Scientific Reports, 12(1): 18763.
Nair, H. B., Sung, B., Yadav, V. R., Kannappan, R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochemical Pharmacology, 80(12): 1833-1843.
Nemec, L. M., Richards, J. D., Atwell, C. A., Diaz, D. E., Zanton, G. I., & Gressley, T. F. (2012). Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of Dairy Science, 95(8): 4568-4577.
Palomares, R.A., Hurley, D.J., Bittar, J.H.J., Saliki, J.T., Woolums, A.R., Moliere, F., Havenga, L.J., Norton, N.A., Clifton, S.J., Sigmund, A.B. & Barber, C.E. (2016). Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves. Veterinary Immunology and Immunopathology, 178: 88-98.
Pan, S., Zhang, K., Ding, X., Wang, J., Peng, H., Zeng, Q., Xuan, Y., Su, Z., Wu, B. & Bai, S. (2018). Effect of high dietary manganese on the immune responses of broilers following oral Salmonella typhimurium inoculation.  Biological Trace Element Research, 181: 347-360.
Parashuramulu, S., Nagalakshmi, D., Rao, D. S., Kumar, M. K., & Swain, P. S. (2015). Effect of zinc supplementation on antioxidant status and immune response in buffalo calves. Animal Nutrition and Feed Technology, 15(2): 179-188.
Peters, J. C., & Mahan, D. C. (2008). Effects of dietary organic and inorganic trace mineral levels on sow reproductive performances and daily mineral intakes over six parities. Journal of Animal Science, 86(9): 2247-2260.
Powell, S. R. (2000). Zinc and health: Current status and future directions. Journal of Nutrition, 130: 1447-1454.
Prasad, A. S. (2014). Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. Journal of Trace Elements in Medicine and Biology, 28(4): 364-371.
Razavi, S. M., Nazifi, S., Bateni, M., & Rakhshandehroo, E. (2011). Alterations of erythrocyte antioxidant mechanisms: antioxidant enzymes, lipid peroxidation and serum trace elements associated with anemia in bovine tropical theileriosis. Veterinary Parasitology, 180(3-4): 209-214.
Richards, J. D., Zhao, J., Harrell, R. J., Atwell, C. A., & Dibner, J. J. (2010). Trace mineral nutrition in poultry and swine. Asian-Australasian Journal of Animal Sciences, 23(11): 1527-1534.
Sahin, K., Smith, M. O., Onderci, M., Sahin, N., Gursu, M. F., & Kucuk, O. (2005). Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84(6): 882-887.
Samuel, K. G., Wang, J., Yue, H. Y., Wu, S. G., Zhang, H. J., Duan, Z. Y., & Qi, G. H. (2017). Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poultry Science, 96(8): 2768-2775.
Sharma, M. C., Joshi, C., Pathak, N. N., & Kaur, H. (2005). Copper status and enzyme, hormone, vitamin and immune function in heifers. Research in Veterinary Science, 79(2): 113-123.
Sharma, M. C., Raju, S., Joshi, C., Kaur, H., & Varshney, V. P. (2003). Studies on serum micro-mineral, hormone and vitamin profile and its effect on production and therapeutic management of buffaloes in Haryana State of India. Asian-Australasian Journal of Animal Sciences, 16(4): 519-528.
Shi, R., Liu, D., Sun, J., Jia, Y., & Zhang, P. (2015). Effect of replacing dietary FeSO4 with equal Fe-levelled iron glycine chelate on broiler chickens. Czech Journal of Animal Sciences, 60(2015): 5.
Singh, C., & Singha, S. P. S. (2003). Effect of zinc administration on the activities of some Zn-metallo enzymes in pre-ruminant buffalo calves. The Indian Journal of Animal Sciences, 73(1).
Smart, M. E., Gudmundson, J., & Christensen, D. A. (1981). Trace mineral deficiencies in cattle: a review. The Canadian Veterinary Journal, 22(12), 372.
Someya, Y., Ichinose, T., Nomura, S., Kawashima, Y. U., Sugiyama, M., Tachiyashiki, K., & Imaizumi, K. (2007). Effects of zinc deficiency on the number of white blood cells in rats. A719-A719
Spears, J. W. (1989). Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers. Journal of Animal Science, 67(3): 835-843.
Spears, J. W. (1996). Organic trace minerals in ruminant nutrition. Animal Feed Science and Technology, 58(1-2): 151-163.
Spears, J. W., & Kegley, E. B. (2002). Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. Journal of Animal Science, 80(10): 2747-2752.
Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1): 70-76.
Spee, B., Mandigers, P.J., Arends, B., Bode, P., van den Ingh, T.S., Hoffmann, G., Rothuizen, J. & Penning, L.C. (2005). Differential expression of copper-associated and oxidative stress related proteins in a new variant of copper toxicosis in Doberman pinschers. Comparative Hepatology, 4: 1-13.
Stefanidou, M., Maravelias, C., Dona, A., & Spiliopoulou, C. (2006). Zinc: a multipurpose trace element. Archives of Toxicology, 80: 1-9.
Sun, Q., Guo, Y., Ma, S., Yuan, J., An, S., & Li, J. (2012). Dietary mineral sources altered lipid and antioxidant profiles in broiler breeders and posthatch growth of their offsprings. Biological Trace Element Research, 145: 318-324.
Tako, E. L. A. D., Rutzke, M. A., & Glahn, R. P. (2010). Using the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailability. Poultry Science, 89(3): 514-521.
Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57(9): 399-411.
Timmerman, H. M., Mulder, L., Everts, H., Van Espen, D. C., Van Der Wal, E., Klaassen, G., & Beynen, A. C. (2005). Health and growth of veal calves fed milk replacers with or without probiotics. Journal of Dairy Science, 88(6): 2154-2165.
Toghdory, A., Asadi, M., Ghoorchi, T., & Hatami, M. (2023). Impacts of organic manganese supplementation on blood mineral, biochemical, and hematology in Afshari Ewes and their newborn lambs in the transition period. Journal of Trace Elements in Medicine and Biology, 79: 127215.
Tomlinson, D. J., Socha, M. T., & DeFrain, J. M. (2008). Role of trace minerals in the immune system. In Proc. Penn State Dairy Cattle Nutrition Workshop. Grantville, PA (pp. 39-52).
Uhlar, C. M., & Whitehead, A. S. (1999). Serum amyloid A, the major vertebrate acute‐phase reactant. European Journal of Biochemistry, 265(2): 501-523.
Veum, T. L., Carlson, M. S., Wu, C. W., Bollinger, D. W., & Ellersieck, M. R. (2004). Copper proteinate in weanling pig diets for enhancing growth performance and reducing fecal copper excretion compared with copper sulfate. Journal of Animal Science, 82(4): 1062-1070.
Wang, G., Liu, L. J., Tao, W. J., Xiao, Z. P., Pei, X., Liu, B. J., & Ao, T. Y. (2019). Effects of replacing inorganic trace minerals with organic trace minerals on the production performance, blood profiles, and antioxidant status of broiler breeders. Poultry Science, 98(7): 2888-2895.
Ward, J.D., Spears, J.W., Kegley, E.B., 1993. Effect of copper level and source (copper lysine vs. copper sulfate) on copper status, performance, and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. Journal of Animal Science. 71: 2748–2755.
Wei, J., Ma, F., Hao, L., Shan, Q., & Sun, P. (2019). Effect of differing amounts of zinc oxide supplementation on the antioxidant status and zinc metabolism in newborn dairy calves. Livestock Science, 230: 103819.
Xie, D., Wen, M., Wu, B., Zhang, Z., Zhao, H., Liu, G., Chen, X., Tian, G., Cai, J. & Jia, G. (2019). Effect of iron supplementation on growth performance, hematological parameters, nutrient utilization, organ development, and Fe-containing enzyme activity in Pekin ducks. Biological Trace Element Research, 189: 538-547.
Zimmermann, M. B. (2006). The influence of iron status on iodine utilization and thyroid function. Annual Review of Nutrition., 26: 367-389.