اثرات سطوح مختلف روغن اسانسی و عصاره متانولی گیاه نعناع دشتی (Mentha spicata) بر فرانسجه‌های تخمیر شکمبه و تولید گاز متان شکمبه ای گاوهای شیری در شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه بوعلی سینا، همدان، ایران،

چکیده

سابقه و هدف: نظر به افزایش روز افزون جمعیت و نیاز آن به منابع پروتئینی حیوانی، اهمیت افزایش بهره‌وری تولید دام‌‌ها دو چندان شده است. با توجه به کارایی پایین تخمیر شکمبه، دستکاری تخمیر شکمبه بعنوان یکی از راهکارهای مؤثر در جهت بهبود راندمان استفاده از خوراک و کاهش هدرروی مواد مغذی و جلوگیری از آلودگی محیط زیست مطرح شده است. در این راستا، استفاده از افزودنی‌های خوراکی، به خصوص متابولیت‌های ثانویه با منشاء گیاهی بعنوان راهکاری مؤثر و سازگار با دامپروری پایدار در دهه‌های اخیر مورد توجه محققین تغذیه دام قرار گرفته است. لذا، هدف از مطالعه حاضر بررسی اثرات مقایسه‌ای سطوح مختلف روغن اسانسی و عصاره گیاه نعناع دشتی بر حجم گاز تولیدی، فراسنجه‌های هضم و تخمیر شکمبه و تولید گاز متان شکمبه‌ای در شرایط آزمایشگاهی بود.
مواد و روش‌ها: روغن اسانسی نعناع دشتی با استفاده از کلونجر به روش تقطیر با بخار آب و عصاره آن با استفاده از متانول 85% وحمام اولتراسونیک و متعاقبا سانتریفیوژ استخراج گردید. در این تحقیق، اثرات روغن اسانسی و عصاره گیاه نعناع دشتی در 6 سطح غلظتی، شامل سطوح صفر (به‌عنوان شاهد) و سطوح 150 (دوز پایین)، 300 و 450 (دوزهای متوسط)، و 600 میلی‌گرم بر لیتر (دوز بالا) بر فراسنجه‌های هضم و تخمیر شکمبه و تولید گاز متان شکمبه‌ای با یک جیره پر کنسانتره برای گاوهای شیری بررسی گردیده و اثرات تیمارها در قالب یک طرح کاملا تصادفی بصورت تجزیه مرکب مورد تجزیه و تحلیل آماری قرار گرفت.
یافته‌ها: بموازات افزایش دوز اسانس و عصاره نعناع، حجم گاز تولید شده بعد از 24 ساعت بصورت درجه دوم تغییر کرد (01/0 >P) و درصد متان تولیدی بترتیب بصورت خطی و غیرخطی( خطی و درجه دوم) کاهش یافت (01/0>P)، به‌طوری که استفاده از سطوح بالای اسانس و عصاره بترتیب موجب کاهش 2/8 و 7/12 درصد متان تولیدی در مقایسه با شاهد گردید (01/0>P). میزان هضم حقیقی ماده خشک و مادۀ آلی سوبسترا بترتیب بموازات افزایش دوز اسانس و عصاره نعناع بصورت خطی کاهش یافتند (01/0>P). توده میکروبی و بازده سنتز توده میکروبی تنها تحت تاثیر عصاره نعناع قرار گرفته و با افزایش دوز عصاره بترتیب بصورت غیر خطی و خطی افزایش یافتند (01/0 >P)، بالاترین مقدار توده میکروبی و بازده سنتز توده میکروبی بترتیب با 7/16 و 3/25 درصد افزایش نسبت به شاهد بترتیب در سطوح 450 و 600 میلی‌گرم بر لیتر عصاره مشاهده گردید (01/0>P). غلظت آمونیاک شکمبه ای بموازات افزایش دوز اسانس و عصاره نعناع بترتیب بصورت خطی افزایش و کاهش یافت (05/0>P)، به‌طوری که سطح بالای اسانس موجب افزایش 5/46 درصدی و سطح بالای عصاره موجب کاهش 6/13درصدی غلظت آمونیاک درمقایسه با شاهد شدند (05/0>P). غلظت کل اسیدهای چرب فرار تحت تاثیر هر دو افزودنی اسانس و عصاره نعناع بصورت خطی کاهش یافت (01/0>P). درصد مولی پروپیونات با افزایش دوز اسانس و عصاره نعناع بصورت غیر خطی افزایش یافت (01/0>P)، به‌طوری سطح 150 اسانس و سطح 600 میلی گرم بر لیتر عصاره بترتیب موجب افزایش 4/6 و 6/7 درصدی پروپیونات نسبت به شاهد گردیدند (01/0>P).
نتیجه‌گیری: در مجموع، نتایج این تحقیق نشان داد که با وجود اثرات منفی هر دو افزودنی اسانس و عصاره بر تخمیر شکمبه در دوز بالا، استفاده از عصاره خشک نعناع در دوزهای پایین و متوسط (معادل حدود 150 تا 450 گرم در روز برای گاوهای شیری) می‌تواند اثرات امید بخشی در بهبود تخمیر شکمبه داشته باشد. کاهش تولید گاز متان و آمونیاک، و بهبود تولید و بازده سنتز توده میکروبی حاکی از اثرات مثبت عصاره نعناع بر تخمیر شکمبه می باشند که ضمن بهبود راندمان تولید می‌‌تواند موجب کاهش اثرات زیست محیطی نشخوارکنندگان گردد که این امر نیازمند تحقیق بیشتر در شرایط مزرعه‌‌ای و با استفاده از دام زنده می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of different levels of Spearmint (Mentha spicata) essential oil and methanolic extract on rumen fermentation parameters and methane production of dairy cattle in vitro

نویسندگان [English]

  • Ehsan Rezaei 1
  • Mostafa Malecky 2
  • Daryoush Alipour 2
1 PhD student, Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Associate Professor, Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran,
چکیده [English]

Background and Objectives: Given the escalating global population and its growing demand for animal protein resources, the significance of maximizing livestock production efficiency has doubled. Owing the low efficiency of rumen fermentation, the rumen manipulation has emerged as an effective strategy to improve feed efficiency and reduce nutrient wastage, thereby reducing environmental impact. In this context, the use of feed additives, particularly plant-derived secondary metabolites has attracted the attention of animal nutritionists as an effective strategy and sustainable solution in recent decades. Therefore, this study aimed to investigate in vitro the comparative effects of different levels of essential oil and extract of spearmint on gas volume production, rumen digestion parameters, and methane production.

Materials and Methods: The essential oil of spearmint (MSEO) was extracted by steam distillation method using a Clevenger apparatus, and its extract (MSEX) was obtained using 85% methanol followed by ultrasonic bath and centrifugation. In this study, the effects of spearmint essential oil and extract on rumen digestion and fermentation parameters of a high-concentrate diet for dairy cows were evaluated at six concentration levels: zero (as control), 150 (low dose), 300 and 450 (moderate doses), and 600 mg/L (high dose) and the treatment effects were analysed statistically using a complete randomised design with combined analysis.

Results: The volume of gas produced after 24 h of incubation changed quadratically (P< 0.01), and the percentage of methane production decreased linearly and non-linearly (linear and quadratic) with increasing dose of MSEO and MSEX, respectively (P< 0.01), as the high dose of MSEO and MSEX resulted in an 8.2% and 12.7% reduction in the percentage of methane production, respectively, compared to the control (P<0.01). The true in vitro dry matter and organic matter digestibility of the substrate decreased linearly with increasing dose of both MSEO and MSEX (P< 0.01). The microbial mass (MB) and efficiency of microbial biomass synthesis (EMBS) were affected only by MSEX, and increased non-linearly and linearly, respectively, with increasing dose of MSEX (P< 0.01),with the highest MB and EMBS (16.7% and 25.3% increase, respectively, compared to the control) observed at 450 and 600 mg/L of MSEX, respectively (P<0.01). Ammonia concentration increased and decreased linearly with increasing dose of the essential oil and extract of spearmint, respectively (P< 0.05), As at the high dose, MSEO increased ammonia by 46.5% while MSEX decreased ammonia by 13.6% compared to the control (P< 0.05). Total volatile fatty acid concentration decreased linearly with both MSEO and MSEX dosages (P< 0.01). The molar proportion of propionate increased non-linearly with both MSEO and MSEX dosages (P< 0.01), as the 150 mg/L level of MSEO and that of 600 mg/L of MSEX increased the proportion of propionate by 6.4% and 7.6% respectively compared to the control (P<0.01).
Conclusion: In conclusion, the results of this study showed that despite the negative effects of both MSEO and MSEX at high doses on rumen fermentation, the use of spearmint dry extract at low and moderate doses (equivalent to fairly 150 to 450 g/d for dairy cattles) could have have promising effects in improving rumen fermentation. The reduction in methane and ammonia production, and the improvement in microbial biomass and microbial biomass synthesis efficiency are indications of the beneficial effects of spearmint extract on rumen fermentation, which, in addition to improving production efficiency, may contribute to mitigating the environmental impact of ruminants, which requires further in vivo research under field conditions.

کلیدواژه‌ها [English]

  • Essential oil
  • methanolic extract
  • spearmint (mentha spicata)
  • rumen fermentation
  • methane gas
Adesogan, A.T. (2009). Using dietary additives to manipulate rumen fermentation and improve nutrient utilization and animal performance. 20th Annual Florida Ruminant Nutrition Symposium. 13-38.
Agarwal, N., Shekar, C., Kumar, R., Chaudhary, L.C., & Amra, D.N. (2008). Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology,.148:321-327.
Ando, S., Nishida, T., Ishida, M., Hosoda, K., & Bayaru, E. Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa. Livestock Production Science, 82(2): 245-248.
AOAC. 2000. Official methods of analysis‎,17th ed. Association of official analytical chemists.‎, VA, USA‎.
Bach, A., Calsamiglia, S., & Stern, M.D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88: E9-E21.
Bardaweel, S. K., Bakchiche, B., ALSalamat, H. A., Rezzoug, M., Gherib, A., & Flamini, G. (2018). Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L.(Lamiaceae) from Algerian Saharan atlas. BMC Complementary and Alternative Medicine, 18: 1-7.
Blummel, M., Makkar, H. P. S., &Becker, K. (1997a). In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition, 77: 24-34.
Blummel, M., Steingaβ, H., & Becker, K. (1997b). The relationship between in vitro gas production, in vitro microbial biomass yield and 15 N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77: 911-921.
Bodas, R., Prieto, N., García-Gonzáles, R., Andrés, S., Giráldez, F.J., & López,S. (2012). Manipulation of rumen fermentation and methane produc-tion with plant secondary metabolites. Animal Feed Science and Technology, 176: 78–93.
Broderick, G. A., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63: 64-75.
Broudiscou, L.-P., Papon, Y., & Broudiscou, A.F. (2002). Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. Animal Feed Science and Technology, 101: 183–189.
Busquet, M., Calsamiglia, S., Ferret, A. & Kamel, C. (2006). Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 89: 761–771.
Calabrò, S. (2015). Plant secondary metabolites. Rumen microbiology:From evolution to revolution, Springer, New Delhi, India, 400p.
Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., & Ferret, A.(2007). Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation. Journal of Dairy Science, 90, 2580–2595.
Cleff, M.B., Meinerz, A. R., Xavier, M., Schuch, L.F., Schuch, L.F., Araújo & Meireles, M.C. (2010). In vitro activity of origanum vulgare essential oil against Candida species. Brazilian Journal of Microbiology, 41:116–23.
Delgadillo-Ruiz, L., Bañuelos-Valenzuela, R., Gallegos-Flores, P., Echavarría-Cháirez, F., Meza-López, C., & Gaytán-Saldaña, N. (2021). Modification of ruminal fermentation in vitro for methane mitigation by adding essential oils from plants and terpenoid compounds. Abanico veterinário, 11:1-12.
Dey, A., Paul, S. S., Lailer, P. C., & Dahiya, S. S. (2021). Reducing enteric methane production from buffalo (Bubalus bubalis) by garlic oil supplementation in in vitro rumen fermentation system. SN Applied Sciences, 3(2): 187.
El-Zaiat, H.M., & Abdalla, A.L.( 2019). Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. Environmental Science and Pollution Research, 26: 30220–30228.
El-Zaiat, H.M., Ré, D.D., Patino, H.O., & Sallam, S.M. (2019). Assessment of using dried vinasse rice to replace soybean meal in lambs diets: In vitro, lambs performance and economic evaluation. Small Ruminant Research, 173: 1–8.
Faniyi, T. O., Adewumi, M. K., Jack, A. A., Adegbeye, M. J., Elghandour, M. M., Barbabosa-Pliego, A., & Salem, A. Z. (2021). Extracts of herbs and spices as feed additives mitigate ruminal methane production and improve fermentation characteristics in West African Dwarf sheep. Tropical Animal Health and Production, 53: 1-8.‏
Garcia-Galicia, I. A., Arras-Acosta, J. A., Huerta-Jimenez, M., Rentería-Monterrubio, A. L., Loya-Olguin, J. L., Carrillo-Lopez, L. M., & Alarcon-Rojo, A. D. (2020). Natural oregano essential oil may replace antibiotics in lamb diets: Effects on meat quality. Antibiotics, 9(5), 248.
Giordani, R., Regli, P., Kaloustian, J., Mikail, C., Abou, L., & Portugal, H. (2004). Antifungal effect of various essential oils against Candidaalbicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytotherapy Research, 18(12): 990-995.
Golbotteh, M. M., Malecky, M., Aliarabi, H., Zamani, P., & Ganjkhanlou, M. (2022). Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro. Annals of Animal Science, 22(3): 1001-1014.
Hassan, R. A., Hamed, H. B., Sanad, M. I., & Said Ahmed, K. A. (2014). Free radicals scavenging activity of spearmint methanolic extract. Journal of Agricultural Chemistry and Biotechnology, 5(7): 189-200.
Hegarty, R., & Klieve, A.(1999). Opportunities for biological control of ruminal methanogenesis. Australian Journal of Agricultural Research. 50: 1315-1320.
Hosoda, K., Nishida, T., Park, W. Y., & Eruden, B. (2005). Influence of Mentha× piperita L.(peppermint) supplementation on nutrient digestibility and energy metabolism in lactating dairy cows. Asian-Australasian Journal of Animal Sciences, 18(12): 1721-1726.
Hristov, A.N., Oh, J., Giallongo, F., Frederick, T.W., Harper, M.T., Weeks, H.L., Branco, A.F., Moate, P.J., Deighton, M.H., Williams, S.R.O., Kindermann, M., & Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences USA. 112 (34): 10663e10668.
Hussain, A. I., Anwar, F., Shahid, M., Ashraf, M., & Przybylski, R. (2010). Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. Journal of Essential Oil Research, 22(1): 78-84.
Joch, M., Kudrna, V., Hakl, J., Božik, M., Homolka, P., Illek, J., Tyrolová, Y., & Výborná, A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Animal Feed Science and Technology, 251:176–186.
Jouany, J.P. (1996). Effect of rumen protozoa on nitrogen utilization by ruminants. Journal of Nutrition, 126:1335S–1346S.
Kahvand, M., & Malecky, M. (2018). Dose-response effects of sage (Salvia officinalis) and yarrow (Achillea millefolium) essential oils on rumen fermentation in vitro. Annals of Animal Science, 18: 125–142.
Khejornsart, P., Cherdthong, A., & Wanapat, M. (2021). In vitro screening of plant materials to reduce ruminal protozoal population and mitigate ammonia and methane emissions. Fermentation, 7(3): 166.
Kim, H., Jung, E., Lee, H. G., Kim, B., Cho, S., Lee, S., & Seo, J. (2019). Essential oil mixture on rumen fermentation and microbial community–an in vitro study. Asian-Australasian Journal of Animal Sciences, 32(6): 808.
Lawless, J. (1995). The Illustrated Encyclopaedia of Essential Oils. Element Books Ltd, 256p.
Mahendran, G., Verma, S.K. & Rahman, L.U. (2021)."The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review." Journal of Ethnopharmacology 278: 114266.
Makkar, H., Blümmel, M., & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73: 897-913.
Malecky, M., Albarello, H., & Broudiscou, L.P. (2012). Degradation of terpenes and terpenoids from Mediterranean rangelands by mixed rumen bacteria in vitro. Animal 6: 612-616.
Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P. W., & Cotter, P. D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10(2): 115-132.
Menke, K., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28: 7-55.
Moss, A.R., Jouany, J.-P., & Newbold, J. (2000). Methane production by ruminants: its contribution to global warming, Annales de zootechnie, EDP Sciences, pp. 231-253.
Nolan, J.V., &  Dobos, R.C. (2005). Nitrogen Transactions in Ruminants. In: Quantitative aspects of ruminant digestion and metabolism,Dijkstra J., Forbes J.M., France J. (eds.). CABI Publishing. Walingford, UK, pp. 177–206.
Orzuna-Orzuna, J.F., Dorantes-Iturbide, G., Lara-Bueno, A., Miranda-Romero, L.A., Mendoza-Martínez, G.D. & Santiago-Figueroa, I. (2022). A meta-analysis of essential oils use for beef cattle feed: rumen fermentation, blood metabolites, meat quality, performance and, environmental and economic impact. Fermentation, 8: 254.
Ottenstein, D., & Bartley, D. (1971). Separation of free acids C2–C5 in dilute aqueous solution column technology. Journal of Chromatographic Science, 9: 673-681.
Patra, A.K., & Yu, Z.( 2012).Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78: 4271–4280.
Patra, A.K., & Yu, Z. (2013). Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques. Journal of Dairy Science, 96: 4592–4600.
Patra, A., Kamra, D., & Agarwal, N. (2006). Effect of plant extracts on in vitro methanogenesis ,enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology. 128: 276-291.
Roman-Garcia, Y., Mitchell, K. E., Denton, B. L., Lee, C., Socha, M. T., Wenner, B. A., & Firkins, J. L. (2021). Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. II: Relation with solid passage rate and pH on neutral detergent fiber degradation and microbial function in continuous culture. Journal of Dairy Science, 104(9): 9853-9867.
Roman-Garcia, Y., White, R. R., & Firkins, J. L. (2016). Meta-analysis of postruminal microbial nitrogen flows in dairy cattle. I. Derivation of equations. Journal of Dairy Science, 99(10): 7918-7931.
Sada, A., Nishida, T.‚ Ishida, M.‚ Hosoda, K., & Bayaru, E. (2003). Effect of peppermint feeding on the digestibility‚ ruminal fermentation and protozoa. Livestock Production Science, 82:245-248.
Sanjorjo, R. A., Tseten, T., Kang, M. K., Kwon, M., & Kim, S. W. (2023). In pursuit of understanding the rumen microbiome. Fermentation, 9(2): 114.
Santoso, B., Kilmaskossu, A., & Sambodo, P. (2007). Effects of saponin from Biophytum petersianum Klotzsch on ruminal fermentation, microbial protein synthesis and nitrogen utilization in goats. Animal Feed Science and Technology, 137:58–68.
Schader, C., Muller, A., Scialabba, N E-H., Hecht, J., Isensee, A., Erb, K-H., Smith, P.,Makkar ,HPS., Klocke, P., Leiber, F., Schwegler, P., Stolze, M., & Niggli, U. (2015).Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of the Royal Society Interface 12: 20150891.
Skendi, A., Irakli, M., & Chatzopoulou, P. (2017). Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. Journal of Applied Research on Medicinal and Aromatic Plants, 6, 62-69.
Snoussi, M., Noumi, E., Trabelsi, N., Flamini, G., Papetti, A., & De Feo, V. (2015). Mentha spicata essential oil: chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules, 20(8): 14402-14424.
Szulc, P., Nowak, B., Hassan, M. U., Lechniak, D., Ślusarczyk, S., Bocianowski, J., & Cieslak, A. (2024). Potential of Paulownia Leaves Silage in Lamb Diet to Improve Ruminal Fermentation and Fatty Acid Profile− An Study. Annals of Animal Science, 24(1): 211-221.
Taghavi Nezhad, M., Alipour, D., Torabi Goudarzi, M., Zamani, P., & Khodakaramian, G. (2011). Dose response to carvone rich essential oils of spearmint (Mentha spicata L.): in vitro ruminal fermentation kinetics and digestibility. Journal of Agricultural Science and Technology, 13(7): 1013-1020.
Taghavi-Nezhad, M., Alipour, D., Flythe, M. D., Zamani, P., & Khodakaramian, G. (2013). The effect of essential oils of Zataria multiflora and Mentha spicata on the in vitro rumen fermentation, and growth and deaminative activity of amino acid-fermenting bacteria isolated from Mehraban sheep. Animal Production Science, 54(3): 299-307.
Torres, R., Moura, D., Ghedini, C., Ezequiel, J.,  & Almeida, M., (2020). Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Ruminant Research. 189: 106-148.
Ungerfeld, E.M. (2015). Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Frontiers in microbiology, 6: 1272.
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral ‎detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
Wang, D., Huang J., Zhang Z., Tian X., Huang H., Yu Y., Zhang G.,Ding J., & Huang, R. (2013). Influences of Portulaca oleracea extracts on in vitro methane emissions and rumen fermentation of forage. Journal of Food, Agriculture and Environment, 11: 483–488.
Wencelová, M., Váradyová, Z., Mihaliková, K., Čobanová, K., Plachá, I., Pristaš, P., Jalč, D., & Kišidayová, S. (2015). Rumen fermentation pattern, lipid metabolism and the microbial community of sheep fed a high-concentrate diet supplemented with a mix of medicinal plants. Small Ruminant Research, 125, 64–72.
Wenner, B.A., de Souza, J., Batistel, F., Hackmann, T.J., Yu, Z., & Firkins, J.L. (2017). Association of aqueous hydrogen concentration with methane production in continuous cultures modulated to vary pH and solids passage rate. Journal of Dairy Science, 100(7): 5378-5389.
Zhao, Y., Liu, M., Jiang, L., & Guan, L. (2023). Could natural phytochemicals be used to reduce nitrogen excretion and excreta-derived N2O emissions from ruminants?. Journal of Animal Science and Biotechnology, 14(1): 140.