Abaspour Aporvari, M. H., Mamoei, M., Tabatabaei Vakili, S., Zareei, M., & Dadashpour Davachi, N. (2018). The Effect of Oral Administration of Zinc Oxide Nanoparticles on Quantitative and Qualitative Properties of Arabic Ram Sperm and Some Antioxidant Parameters of Seminal Plasma in the Non-Breeding Season.
Archives of Razi Institute, 73(2), 121-129.
https://doi.org/10.22092/ari.2018.120225.1187
Abedin, S. N., Baruah, A., Baruah, K. K., Bora, A., Dutta, D. J., Kadirvel, G., Deori, S. (2023). Zinc oxide and selenium nanoparticles can improve semen quality and heat shock protein expression in cryopreserved goat (
Capra hircus) spermatozoa.
Journal of Trace Elements in Medicine and Biology, 80, 127296.
https://doi.org/https://doi.org/10.1016/j.jtemb.2023.127296
Afifi, M., Almaghrabi, O. A., & Kadasa, N. M. (2015). Ameliorative Effect of Zinc Oxide Nanoparticles on Antioxidants and Sperm Characteristics in Streptozotocin-Induced Diabetic Rat Testes. BioMed Research International, 2015, 153573. https://doi.org/10.1153573/2015/155
AOAC. (2006). Official Methods of Analysis (18 ed.). Association of Official Analytical Chemists.
Arangasamy, A., Venkata Krishnaiah, M., Manohar, N., Selvaraju, S., Guvvala, P. R., Soren, N. M., Ravindra, J. P. (2018). Advancement of puberty and enhancement of seminal characteristics by supplementation of trace minerals to bucks.
Theriogenology, 110, 182-191.
https://doi.org/https://doi.org/10.1016/j.theriogenology.2018.01.008
Arthington, J. D., Corah, L. R., & Hill, D. A. (2002). The Effects of Dietary Zinc Concentration and Source on Yearling Bull Growth and Fertility11Contribution no. R-08583 from the Florida Agriculture Experiment Station. The Professional Animal Scientist, 18(3), 282-285. https://doi.org/https://doi.org/10.15232/S1080-7446(15)31534-5
Dhoke, S. K. (2023). Synthesis of nano-ZnO by chemical method and its characterization. Results in Chemistry, 5, 100771.
El-Masry, K., Nasr, A., & Kamal, T. (1994). Influences of season and dietary supplementation with selenium and vitamin E or zinc on some blood constituents and semen quality of New Zealand White rabbit males. World Rabbit Science, 2 (3).
Garg, A. K., Mudgal, V., & Dass, R. S. (2008). Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144(1), 82-96. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2007.10.003
Geary, T. W., Kelly, W. L., Spickard, D. S., Larson, C. K., Grings, E. E., & Ansotegui, R. P. (2016). Effect of supplemental trace mineral level and form on peripubertal bulls. Animal Reproduction Science, 168, 1-9. https://doi.org/https://doi.org/10.1016/j.anireprosci.2016.02.018
Hernández-Meléndez, J., Salem, A. Z., Sánchez-Dávila, F., Rojo, R., Limas, A. G., López-Aguirre, D., & Vázquez-Armijo, J. F. (2015). Effect of copper and zinc supplementation on growth, blood serum copper and zinc levels, scrotal circumference and semen quality in growing male Boer× Nubian bucks. Journal of Life Science, 12, 108-112.
Kendall, N. R., McMullen, S., Green, A., & Rodway, R. G. (2000). The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs.
Animal Reproduction Science, 62(4), 277-283.
https://doi.org/https://doi.org/10.1016/S0378-4320(00)00120-2
Kumar, N., Verma, R. P., Singh, L. P., Varshney, V. P., & Dass, R. S. (2006). Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls.
Reproduction Nutrition Development, 46(6), 663-675.
https://doi.org/10.1051/rnd:2006041
Kvist, U., Björndahl, L., & Kjellberg, S. (1987). Sperm nuclear zinc, chromatin stability, and male fertility. Scanning Microsc, 1(3), 1241-1247.
Kvist, U., Kjellberg, S., Björndahl, L., Hammar, M., & Roomans, G. M. (1988). Zinc in sperm chromatin and chromatin stability in fertile men and men in barren unions.
Scand Journal Urol Nephrol, 22(1), 1-6.
https://doi.org/10.1080/00365599.1988.11690374
Larsen, L., Scheike, T., Jensen, T. K., Bonde, J. P., Ernst, E., Hjollund, N. H., Giwercman, A. (2000). Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. The Danish First Pregnancy Planner Study Team.
Human Reproduction, 15(7), 1562-1567.
https://doi.org/10.1093/humrep/15.7.1562
Liu, H., Sun, Y., Zhao, J., Dong, W., & Yang, G. (2020). Effect of Zinc Supplementation on Semen Quality, Sperm Antioxidant Ability, and Seminal and Blood Plasma Mineral Profiles in Cashmere Goats.
Biological Trace Element Research 196(2), 438-445.
https://doi.org/10.1007/s12011-019-01933-x
Liu, H. Y., Sun, M. H., Yang, G. Q., Jia, C. L., Zhang, M., Zhu, Y. J., & Zhang, Y. (2015). Influence of different dietary zinc levels on cashmere growth, plasma testosterone level and zinc status in male Liaoning Cashmere goats.
Journal of Animal Physiology and Animal Nutrition, 99(5), 880-886.
https://doi.org/https://doi.org/10.1111/jpn.12292
Mekasha, Y., Tegegne, A., & Rodriguez-Martinez, H. (2007). Effect of Supplementation with Agro-industrial By-products and Khat (
Catha edulis) Leftovers on testicular growth and sperm production in Ogaden bucks.
Journal of Vet Med A Physiol Pathol Clin Med, 54(3), 147-155.
https://doi.org/10.1111/j.1439-0442.2007.00876.x
Mousavi Esfiokhi, S. H., Norouzian, M. A., & Najafi, A. (2023). Effect of different sources of dietary zinc on sperm quality and oxidative parameters.
Frontiers in Veterinary Science, 10, 1134244.
https://doi.org/10.3389/fvets.2023.1134244
Narasimhaiah, M., Arunachalam, A., Sellappan, S., Mayasula, V., Guvvala, P., Ghosh, S., Kumar, H. (2018). Organic zinc and copper supplementation on antioxidant protective mechanism and their correlation with sperm functional characteristics in goats.
Reproduction in Domestic Animals, 53(3), 644-654.
https://doi.org/https://doi.org/10.1111/rda.13154
Patricio, A., Cruz, D. F., Silva, J. V., Padrão, A., Correia, B. R., Korrodi-Gregório, L., Fardilha, M. (2016). Relation between seminal quality and oxidative balance in sperm cells.
Acta Urológica Portuguesa, 33(1), 6-15.
https://doi.org/https://doi.org/10.1016/j.acup.2015.10.001
Pineda, M., & Dooley, M. (2003). Veterinary endocrinology and reproduction. Ed, 3, 218-223.
Puchala, R., Sahlu, T., & Davis, J. (1999). Effects of zinc-methionine on performance of Angora goats. Small Ruminant Research, 33(1), 1-8.
Rahman, H. U., Qureshi, M. S., & Khan, R. U. (2014). Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of beetal bucks.
Reproduction in Domestic Animals, 49(6), 1004-1007.
https://doi.org/10.1111/rda.12422
Raje, K., Ojha, S., Mishra, A., Munde, V., Chandrakanta, Rawat, & Chaudhary, S. K. (2018). Impact of supplementation of mineral nano particles on growth performance and health status of animals: A review. Journal of Entomology and Zoology Studies, 6(3), 1690-1694
Rimbach, G., Walter, A., Most, E., & Pallauf, J. (1998). Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food and Chemical Toxicology, 36(1), 7-12. https://doi.org/https://doi.org/10.1016/S0278-6918-00117(97)5
Rowe, M. P., Powell, J. G., Kegley, E. B., Lester, T. D., & Rorie, R. W. (2014). Effect of supplemental tracemineral source on bull semen quality. The Professional Animal Scientist, 30(1), 68-73. https://doi.org/https://doi.org/10.15232/S1081-30085(15)7446-0
Roy, B., Baghel, R. P. S., Mohanty, T. K., & Mondal, G. (2013). Zinc and Male Reproduction in Domestic Animals: A Review. Indian Journal of Animal Nutrition, 30, 339-350.
Saaranen, M., Suistomaa, U., Kantola, M., Saarikoski, S., & Vanha-Perttula, T. (1987). Lead, magnesium, selenium and zinc in human seminal fluid: comparison with semen parameters and fertility. Human Reproduction, 2(6), 475-479. http/doi.org/10.1093/oxfordjournals.humrep.a136573
Saleh, S., Ibrahim, A., & Yousri, R. (1994). The effect of dietary zinc, season and breed on semen quality and body weight in goats. Journal of Animal Reproduction and Biotechnology. 25 (2) 5-12.
Sun, B., Ma, J., Te, L., Zuo, X., Liu, J., Li, Y., Wang, S. (2023). Zinc-Deficient Diet Causes Imbalance in Zinc Homeostasis and Impaired Autophagy and Impairs Semen Quality in Mice.
Biol Trace Elem Res, 201(5), 2396-2406.
https://doi.org/10.1007/s12011-022-03324-1
Swanson, E. W., & Bearden, H. J. (1951). An Eosin-Nigrosin Stain for Differentiating Live and Dead Bovine Spermatozoa.
Journal of Animal Science, 10(4), 981-987.
https://doi.org/10.2527/jas1951.104981x
Talebi, A. R., Khorsandi, L., & Moridian, M. (2013). The effect of zinc oxide nanoparticles on mouse spermatogenesis.
Journal of Assisted Reproduction and Genetics, 30(9), 1203-1209.
https://doi.org/10.1007/s10815-013-0078-y
Ukanwoko, A. I., Ironkwe, M. O., & Nmecha, C. (2013). Growth Performance and Hematological Characteristics of West African Dwarf Goats Fed Oil Palm Leaf Meal Cassava Peel Based Diets. Journal of Animal Production Advances, 3, 1-5.
Underwood, E. J., & Somers, M. (1969). Studies of zinc nutrition in sheep. I. The relation of zinc to growth, testicular development, and spermatogenesis in young rams. Crop and Pasture Science, 20, 889-897.
Venkata Krishnaiah, M., Arangasamy, A., Selvaraju, S., Guvvala, P. R., & Ramesh, K. (2019). Organic Zn and Cu interaction impact on sexual behaviour, semen characteristics, hormones and spermatozoal gene expression in bucks (
Capra hircus).
Theriogenology, 130, 130-139.
https://doi.org/10.1016/j.theriogenology.2019.02.026
Wieringa, F. T., Dijkhuizen, M. A., Fiorentino, M., Laillou, A., & Berger, J. (2015) Determination of zinc status in humans: which indicator should we use?
Nutrients, 7(5), 3252-3263.
https://doi.org/10.3390/nu7053252
Ziaeian, A. H., & Malakouti, M. J. (2001). Effects of Fe, Mn, Zn and Cu fertilization on the yield and grain quality of wheat in the calcareous soils of Iran. In W. J. Horst, M. K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W. B. Frommer, H. Goldbach, H. W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. v. Wirén, & L. Wittenmayer (Eds.), Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research (pp. 840-841). Springer Netherlands. https://doi.org/10.1007/0-306-47624-X_409