Anderson, C. A., Pettersson, F. H., Barrett, J. C., Zhuang, J. J., Ragoussis, J., Cardon, L. R. & Morris, A. P. (2008). Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. The American Journal of Human Genetics, 83: 112-119.
Bakhshalizadeh, S., Zerehdaran, S. & Javadmanesh, A. (2021). Meta-analysis of genome-wide association studies and gene networks analysis for milk production traits in Holstein cows. Livestock Science, 250: 104605.
Bouwman, A. C., Visker, M. H., van Arendonk, J. A. & Bovenhuis, H. (2012). Genomic regions associated with bovine milk fatty acids in both summer and winter milk samples, BMC Genetics,13: 1-13.
Brouwer, I. A., Wanders, A. J. & Katan, M. B. (2013). Tran’s fatty acids and cardiovascular health: research completed. European Journal of Clinical Nutrition, 67: 541-547.
Cai, Z., Dusza, M., Guldbrandtsen, B., Lund, M.S. & Sahana, G. (2020). Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle. Genetics Selection Evolution, 52: 1-15.
Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10: 101-129.
Connor, W. E. (2000). Importance of n− 3 fatty acids in health and disease. The American Journal of Clinical Nutrition, 71:171S-175S.
FAO-WHO. (2008). FAO Food Nutrition Paper. # 91. Fats and Fatty Acids in Human Nutrition, Report of an Expert Consultation. Available online: http://www.fao.org/3/a-i1953e.
Gebreyesus, G., Buitenhuis, A. J., Poulsen, N. A., Visker, M. H. P. W., Zhang, Q., Van Valenberg, H. J. F. & Bovenhuis, H. (2019). Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. Bmc Genomics, 20: 1-16.
Gjuvsland, A. B., Wang, Y., Plahte, E. & Omholt, S. W. (2013). Monotonicity is a key feature of genotype-phenotype maps. Frontiers in Genetics, 4: 216.
Goddard, M. E. & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10: 381-391.
Grummer, R. R. (1991). Effect of feed on the composition of milk fat. Journal of Dairy Science, 74 :3244-3257.
Higgins, J. P., Little, J., Ioannidis, J. P., Bray, M. S., Manolio, T. A., Smeeth, L. & Khoury, M. J. (2007). Turning the pump handle: evolving methods for integrating the evidence on gene-disease association. American Journal of Epidemiology, 166: 863-866.
Jiang, J., Cole, J.B., Freebern, E., Da, Y., VanRaden, P.M. & Ma, L. (2019). Functional annotation and Bayesian fine-mapping reveals candidate genes for important agronomic traits in Holstein bulls. Communications Biology, 2: 212.
Khan, M.Z., Ma, Y., Ma, J., Xiao, J., Liu, Y., Liu, S., Khan, A., Khan, I.M. & Cao, Z. (2021). Association of DGAT1 with cattle, buffalo, goat, and sheep milk and meat production traits. Frontiers in Veterinary Science, 8:712470.
Lean, I. J., Rabiee, A. R., Duffield, T. F. & Dohoo, I. R. (2009). Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. Journal of Dairy Science, 92: 3545-3565.
Liu, L., Zhou, J., Chen, C.J., Zhang, J., Wen, W., Tian, J., Zhang, Z. & Gu, Y. (2020). GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle. Animals, 10: 2048.
Mallett, R., Hagen-Zanker, J., Slater, R. & Duvendack, M. (2012). The benefits and challenges of using systematic reviews in international development research. Journal of Development Effectiveness, 4: 445-455.
Mansbridge, R. J. & Blake, J. S. (1997). Nutritional factors affecting the fatty acid composition of bovine milk. British Journal of Nutrition, 78: S37-S47.
Marete, A. G., Guldbrandtsen, B., Lund, M. S., Fritz, S., Sahana, G. & Boichard, D. (2018). A meta-analysis including pre-selected sequence variants associated with seven traits in three French dairy cattle populations. Frontiers in Genetics, 9: 522.
Narayana, S. G., Schenkel, F. S., Fleming, A., Koeck, A., Malchiodi, F., Jamrozik, J. & Miglior, F. (2017). Genetic analysis of groups of mid-infrared predicted fatty acids in milk. Journal of Dairy Science, 100: 4731-4744.
Nayeri, S. & Stothard, P. (2016). Tissues, metabolic pathways and genes of key importance in lactating dairy cattle. Springer Science Reviews, 4: 49-77.
Palombo, V., Milanesi, M., Sgorlon, S., Capomaccio, S., Mele, M., Nicolazzi, E. & D'Andrea, M. (2018). Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. Journal of Dairy Science, 101: 11004-11019.
Pausch, H., Emmerling, R., Gredler-Grandl, B., Fries, R., Daetwyler, H.D. & Goddard, M.E. (2017). Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution. BMC Genomic, 18: 1-11.
Pereira, P. C. (2014). Milk nutritional composition and its role in human health. Nutrition, 30: 619-627.
Pulina, G., Francesconi, A. H. D., Stefanon, B., Sevi, A., Calamari, L., Lacetera, N. & Ronchi, B. (2017). Sustainable ruminant production to help feed the planet. Italian Journal of Animal Science, 16: 140-171.
Ramasamy, A., Mondry, A., Holmes, C. C. & Altman, D. G. (2008). Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Medicine, 5: e184.
Raven, L.A., Cocks, B.G. & Hayes, B.J. (2014). Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics, 15: 1-14.
Rung, J. & Brazma, A. (2013). Reuse of public genome-wide gene expression data. Nature Reviews Genetics, 14: 89-99.
Saffari, A., Silver, M. J., Zavattari, P., Moi, L., Columbano, A., Meaburn, E. L. & Dudbridge, F. (2018). Estimation of a significance threshold for epigenome‐wide association studies. Genetic Epidemiology, 42:20-33.
Spector, A. A. & Yorek, M. A. (1985). Membrane lipid composition and cellular function. Journal of Lipid Research, 26: 1015-1035.
Tullo, E., Frigo, E., Rossoni, A., Finocchiaro, R., Serra, M., Rizzi, N. & Bagnato, A. (2014). Genetic parameters of fatty acids in Italian Brown Swiss and Holstein cows. Italian Journal of Animal Science, 13: 3208.
Van den Berg, I., Boichard, D. & Lund, M. S. (2016a). Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds. Journal of Dairy Science, 99: 8932-8945.
Van den Berg, I., Boichard, D., Guldbrandtsen, B. & Lund, M.S. (2016b). Using sequence variants in linkage disequilibrium with causative mutations to improve across-breed prediction in dairy cattle: a simulation study. G3: Genes, Genomes, Genetics, 6: 2553-2561.
Van den Berg, I., Xiang, R., Jenko, J., Pausch, H., Boussaha, M., Schrooten, C., Tribout, T., Gjuvsland, A.B., Boichard, D., Nordbø, Ø. & Sanchez, M.P. (2020). Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds. Genetics Selection Evolution, 52: 1-16.
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91: 4414-4423.
Willer, C. J., Li, Y. & Abecasis, G. R. (2010). METAL: fast and efficient meta-analysis of genome wide association scans. Bioinformatics, 26: 2190-2191.
Xiang, R., MacLeod, I.M., Daetwyler, H.D., de Jong, G., O’Connor, E., Schrooten, C., Chamberlain, A.J. & Goddard, M.E. (2021). Genome-wide fine-mapping identifies pleiotropic and functional variants that predict many traits across global cattle populations. Nature Communications, 12: 860.
Yue, S. J., Zhao, Y. Q., Gu, X. R., Yin, B., Jiang, Y. L., Wang, Z. H. & Shi, K. R. (2017). A genome‐wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Animal Genetics, 48: 677-681.