تاثیر تغذیه ذرات نانو اکسید روی بر مصرف مادۀ خشک، ترکیبات شیر و فراسنجه‌های خونی گاوهای شیری هلشتاین

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکدگان کشاورزی دانشگاه تهران، البرز، ایران

2 گروه علوم دامی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 استادیار، گروه شیمی، مرکز تحقیقات دارو رسانی نانو، دانشگاه آزاد اسلامی واحد کرمانشاه، کرمانشاه، ایران

چکیده

سابقه و هدف: توسعه فناوری نانو سبب تولید ذرات نانو روی گردیده است که ویژگی‌های منحصر بفردی نظیر سطح تماس گسترده‌تر، فعالیت سطحی بالاتر، بازده کنش‌یار بیشتر و توانایی جذب قوی‌تری دارند. تغذیۀ ذرات نانو روی نسبت به سایر منابع، بازده بالاتری داشته و مسمومیت با آن احتمال کمتری دارد. از طرفی این ترکیب می‌تواند سبب بهبود رشد باکتری‌های شکمبه و بازده مصرف انرژی شود. از همین رو هدف تحقیق حاضر، بررسی تاثیر تغذیه ذرات نانو روی بر مصرف ماده خشک، ترکیبات شیر و فراسنجه‌های خونی گاوهای شیری هلشتاین پس از زایش می‌باشد.
مواد و روش‌ها: تعداد 24 رأس گاو شیری هلشتاین با میانگین وزنی (20±650 کیلوگرم) و تعداد شکم زایش (2 و بیشتر) و روزهای شیردهی (4±70 روز) طی یک دوره آزمایشی 35 روزه 4 جیره آزمایشی شامل: 1) جیره حاوی 30 میلی‌گرم در کیلوگرم ماده خشک اکسید روی؛ 2) جیره پایه به‌علاوه 30 میلی‌گرم در کیلوگرم ماده خشک ذرات نانو اکسید روی (ZnO-NPs)؛ 3) جیره پایه به‌علاوه 60 میلی‌گرم در کیلوگرم ماده خشک ZnO-NPs؛ (خلوص 99 درصد) و 4) جیره پایه به‌علاوه 90 میلی‌گرم در کیلوگرم ماده خشک ZnO-NPs در قالب طرح کاملاً تصادفی تغذیه و مورد مطالعه قرار گرفتند. تولید آزمایشگاهی ذره نانو روی به روش هم‌رسوبی انجام شد. شیردوشی و خوراک‌دهی گاوها سه مرتبه در روز انجام شد. همچنین نمونه خوراک و باقی‌مانده خوراک 2 بار در هفته جمع‌آوری گردید. جهت اندازه‌گیری ترکیبات شیر به صورت هفتگی 3 روز متوالی نمونه‌های شیر جمع‌آوری شد. همچنین برای اندازه‌گیری فراسنجه‌های سرم نیز نمونه‌های خون به صورت هفتگی دو ساعت پس از خوراک‌دهی وعده صبح با استفاده از سرنگ خلاء از سیاهرگ دُمی گرفته شد.
یافته‌ها: نتایج نشان داد که مادۀ خشک مصرفی و مقدار تولید شیر تحت تاثیر جیره‌های آزمایشی قرار نگرفتند (05/0<P). تعداد سلول‌های بدنی تحت تاثیر مصرف ZnO-NPs به‌طور معنی‌دار روند کاهشی داشت (05/0>P) سایر ترکیبات شیر، مانند پروتئین، چربی، لاکتوز، نیتروژن اوره‌ای شیر، اسیدهای چرب آزاد غیر استریفیه، بتا هیدروکسی بوتیرات تحت تاثیر مصرف ذرات نانو روی قرار نگرفتند (05/0<P). گاوهای گروه ZnO-NPs نسبت به گروه پایه غلظت آنزیم سوپر اکسید دیسموتاز بیشتری نشان دادند (05/0>P). دیگر ترکیبات اندازه‌گیری شده از سرم گاوها در بین گروه‌های آزمایشی تفاوت معنی‌داری نداشتند (05/0<P).
نتیجه‌گیری: به طور کلی، تغذیه عنصر روی در گاوهای شیری از منابع آلی می‌تواند به عنوان راهکاری مناسب جهت مدیریت تولیدات نهایی گله‌های شیری مطرح گردد. نتایج مطالعه حاضر نشان داد که استفاده از نانو روی در جیره‌های غذایی نسبت به فرم معدنی آن منجر به افزایش بهره‌وری تولیدات و عملکرد گاوهای شیری شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of zinc Oxid nanoparticle feeding on dry matter intake, milk composition and blood parameters of Holstein dairy cows.

نویسندگان [English]

  • Abed Zarqami 1
  • abolfazl Zali 2
  • Mahdi Ganjkhanlou 2
  • Mostafa sadeghi 2
  • Ronak Rafipour 3
1 Department of Animal Science, Faculty of Agriculture, University of Tehran, Alborz, Iran
2 Department of Animal Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Assistant Professor, Department of Chemistry, Nano Drug Delivery Research Center, Kermanshah Islamic Azad University, Kermanshah, Iran
چکیده [English]

Background and Objectives: The development of nanotechnology has led to the production of zinc nanoparticles, which possess unique characteristics such as a wider contact surface, higher surface activity, higher catalytic efficiency and stronger absorption ability. This combination has the potential to improve the growth of rumen bacteria and enhance energy consumption. Therefore, the aim of this research is to investigate the effect of zinc nanoparticle supplementation on dry matter intake, milk composition and blood parameters in Holstein dairy cows.
Materials and methods: The number of 24 Holstein dairy cows with an average weight (650±20 kg) and the number of calving bellies (2 and more) and lactation days (70±4 days) during a 35-day trial period, 4 trial diets including. The treatments: 1) Basal Diet containing 30 mg/KgDM zinc oxide, 2) Basal Diet + containing 30 mg/KgDM ZnO-NPs, 3) Basal Diet + containing 60 mg/KgDM ZnO-NPs, and 4) Basal Diet + containing 90 mg/KgDM ZnO-NPs. The study followed completely randomized design Zinc nanoparticles were produced in the laboratory using the by co-precipitation method. The cows were milked and fed three times a day. Feed samples and residues were collected twice a week. Milk samples were collected weekly for three consecutive days. To measure, Milk composition, Blood samples were taken weekly two hours after the morning meal using a vacuum syringe from the tail vein to measure serum parameters.
Results: The results showed that the dry matter intake and the amount of milk production were not affected by the experimental diets (P>0.05). The number of body cells significantly decreased under the influence of ZnO-NPs nanoparticle consumption (P<0.05). They were not affected by the consumption of ZnO-NPs particles (P>0.05). Cows in the ZnO-NPs nanoparticle group showed higher concentration of SOD enzyme than the base group (P<0.05). Other compounds measured from the serum of cows were not significantly different among the experimental groups (P>0.05).
Conclusion: Overall, feeding zinc nanoparticles to dairy cows can be suggested as a solution to enhance of the dairy herd management.. The results showed that nano zinc sources in the diet of dairy cows were more suitable as a supplement compared to the mineral form of zinc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

کلیدواژه‌ها [English]

  • Zinc oxide
  • ZnO-NPs particles
  • performance of dairy cows
  • Blood parameters
Abdollahi, M., Rezaei, J. & Fazaeli, H. (2020). Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Archives of Animal Nutrition, 74(3): 189-205.
Adegbeye, M.J., Elghandour, M. M., Barbabosa-Pliego, A., Monroy, J. C., Mellado, M., Reddy, P. R. K. & Salem, A. Z. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science, 78: 29-37.
Alijani, K., Rezaei, J. & Rouzbehan, Y. (2020). Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep. Animal Feed Science and Technology, 267: 114532.
Alimohamady, R., Aliarabi, H., Bruckmaier, R. M. & Christensen, R. G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research, 189: 75-84.AOAC. (2005). Official Method of Analysis. Arlington, VA, US.
Arabi, F., Imandar, M., Negahdary, M., Imandar, M., Noughabi, M. T., Akbari-dastjerdi, H. & Fazilati, M. (2012). Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Annals of Biological Research, 7: 3679-3685.
Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P. & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10): 634-641.
Bakhshizadeh, S., Aghjehgheshlagh, F. M., Taghizadeh, A., Seifdavati, J. & Navidshad, B. (2019). Effect of zinc sources on milk yield, milk composition and plasma concentration of metabolites in dairy cows. South African Journal of Animal Science, 49(5): 884-891.
Beek, W. J., Wienk, M. M., Kemerink, M., Yang, X. & Janssen, R. A. (2005). Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B, 109(19): 9505-9516.
Belewu, A. & Adewumi, D. (2021). Effect of green syntheses nano zinc oxide on performance characteristics and haematobiochemical profile of West African dwarf goats. Animal Research International, 18(1): 3938-3946.
Chandra, G., Aggarwal, A., Singh, A. K. & Kumar, M. (2015). Effect of vitamin E and zinc supplementation on milk yield, milk composition, and udder health in Sahiwal cows. Animal Nutrition and Feed Technology, 15(1): 67-78.
Chen, J., Wang, W. & Wang, Z. (2011). Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese Journal of Animal Nutrition, 23(8): 1415-1421.
Cope, C. M., Mackenzie, A. M., Wilde, D., & Sinclair, L. A. 2009. Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92(5): 2128-2135.
Cortinhas, C. S., Botaro, B. G., Sucupira, M. C. A., Rennó, F. P., & Santos, M. V. D. 2010. Antioxidant enzymes and somatic cell count in dairy cows fed with organic source of zinc, copper and selenium. Livestock Science, 127(1): 84-87.
El-Sabry, M. I., McMillin, K. W. & Sabliov, C. M. (2018). Nanotechnology considerations for poultry and livestock production systems–a review. Annals of Animal Science, 18(2): 319-334.
El-Sayed, A. & Kamel, M. (2020). Advanced applications of nanotechnology in veterinary medicine. Environmental Science and Pollution Research, 27: 19073-19086.
Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4): 2763-2813.
Hassan, A. A., Oraby, N. A., Mohamed, A. A. & Mahmoud, H. H. (2014). The possibility of using Zinc Oxide nanoparticles in controlling some fungal and bacterial strains isolated from buffaloes. Egyptian Journal of Applied Sciences, 29(3): 58-83.
Hosseini-Vardanjani, S. F., Rezaei, J., Karimi-Dehkordi, S. & Rouzbehan, Y. (2020). Effect of feeding nano-ZnO on performance, rumen fermentation, leukocytes, antioxidant capacity, blood serum enzymes and minerals of ewes. Small Ruminant Research, 191: 106170.
Hozyen, H. F., Ibrahim, E. S., Khairy, E. A. & El-Dek, S. I. (2019). Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Veterinary world, 12(8): 1225.
Kasiani, A., Rezayazdi, K. & Zhandi, M. (2021). Effects of replacing inorganic forms of manganese, zinc, copper and selenium with their organic source on growth performance of suckling Holstein calves. Journal of Ruminant Research, 9(1): 55-68. (In Persian).
Kinal, S., Korniewicz, A., Jamroz, D., Zieminski, R. & Slupczynska, M. (2005). Dietary effects of zinc, copper and manganese chelates and sulphates on dairy cows. Journal of Food, Agriculture and Environment, 3(1): 168-172.
Kujur, K., Ghosh, S., Batabyal, S. & Mukherjee, J. (2016). Effect of micronutrient supplementation on hormonal profile of local goat and sheep breeds of West Bengal. The Indian Journal of Animal Sciences, 86(2): 224-225.
Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. & Dhawan, A. (2011). Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 51(10): 1872-1881.
Liu, Y. J., He, L. L., Mustapha, A., Li, H., Hu, Z. Q. & Lin, M. S. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbiology, 107(4): 1193-1201.
Mandal, G. P., Dass, R. S., Isore, D. P., Garg, A. K. & Ram, G. C. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos Taurus) bulls. Animal Feed Science and Technology, 138(1): 1-12.
Miller, W. J., Amos, H. E., Gentry, R. P., Blackmon, D. M., Durrance, R. M., Crowe, C. T. ... & Neathery, M. W. (1989). Long-term feeding of high zinc sulfate diets to lactating and gestating dairy cows. Journal of Dairy Science, 72(6): 1499-1508.
Mohamed, M. Y., Ibrahim, K., Abd El Ghany, F. T. & Mahgoup, A. A. S. (2017). Impact of nano-zinc oxide supplementation on productive performance and some biochemical parameters of ewes and offspring. Egyptian Journal of Sheep and Goats Sciences, 12(3): 1-16.
Najafzadeh, H., Ghoreishi, S. M., Mohammadian, B., Rahimi, E., Afzalzadeh, M. R., Kazemivarnamkhasti, M. & Ganjealidarani, H. (2013). Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Veterinary World, 6(8).
Nandanwar, A. K., Bhonsle, D., Prusty, S., Rajendran, D. & Thakre, A. (2022). Effect of nano zinc supplementation on hematological parameters and body condition score during transition period in sahiwal cows. Indian Journal of Animal Nutrition, 39(2): 163-173.
Nayeri, A., Upah, N. C., Sucu, E. K. İ. N., Sanz-Fernandez, M. V., DeFrain, J. M., Gorden, P. J. & Baumgard, L. H. (2014). Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. Journal of Dairy Science, 97(7): 4392-4404.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th rev. ed. National Academy Press, Washington, DC. p. 293.
NRC. (2021). Nutrient Requirements of Dairy Cattle. 8th rev. ed. National Academy Press, Washington, DC. p. 315.
Rahman, H. S., Othman, H. H., Abdullah, R., Edin, H. Y. A. S. & AL‐Haj, N. A. (2022). Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Veterinary Medicine and Science, 8(4): 1769-1779.
Rajendran, D., Kumar, G., Ramakrishnan, S. & Shibi, T. K. (2013). Enhancing the milk production and immunity in Holstein Friesian crossbred cow by supplementing novel nano zinc oxide. Research Journal of Biotechnology, 8(5): 11-17.
SAS. (2003). SAS User’s Guide Statistics. Version 9.1 Ed. SAS Inst., Inc., Cary NC.
Seifdavati, J., Jahan Ara, M., Seyfzadeh, S., Abdi Benamar, H., Mirzaei Aghjehgheshlagh, F., Seyedsharifi, R. & Vahedi, V. (2018). The Effects of zinc oxide nano particles on growth performance and blood metabolites and some serum enzymes in Holstein suckling calves. Iranian Journal of Animal Science Research, 10(1): 23-33. (In Persian).
Sobhanirad, S. & Naserian, A. A. (2012). Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Animal Feed Science and Technology, 177(3-4): 242-246.
Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. & Sun, Z. (2010). Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters, 199(3): 389-397.
Sun, Y. I., Oberley, L. W. & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3): 497-500.
Swain, P. S., Rao, S. B. N., Rajendran, D., Soren, N. M., Pal, D. T. & Bhat, S. K. (2018). Effect of supplementation of nano zinc on rumen fermentation and fiber degradability in goats. Animal Nutrition and Feed Technology, 18(3): 297-309.
Tong, G. X., Du, F. F., Liang, Y., Hu, Q., Wu, R. N., Guan, J. G. & Hu, X. (2013). Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. Journal of Materials Chemistry B, 1(4): 454-463.
Uchida, K., Mandebvu, P., Ballard, C. S., Sniffen, C. J. & Carter, M. P. (2001). Effect of feeding a combination of zinc, manganese and copper amino acid complexes, and cobalt glucoheptonate on performance of early lactation high producing dairy cows. Animal Feed Science and Technology, 93(3-4): 193-203.
Van Soest, P. V., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583-3597.
Youssef, F. S., El-Banna, H. A., Elzorba, H. Y. & Galal, A. M. (2019). Application of some nanoparticles in the field of veterinary medicine. International Journal of Veterinary Science and Medicine, 7(1): 78-93.
Zaboli, K. & Elyasi, M. J. (2021). Effects of different amounts of zinc on performance and some blood and ruminal parameters in Holstein suckling calves. Journal of Ruminant Research, 9(3): 93-106. (In Persian).
Zaboli, K., Mehradkia, M. & Aliarabi, H. (2022). The effect of different levels of zinc on nutrients digestibility, ruminal parameters, nitrogen retention and ruminal protozoa in Mehraban male lambs. Journal of Ruminant Research, 10(3): 127-142. (In Persian).
Zirong, X. & Minqi, W. A. N. G. (2001). Approach of the Mechanism of Growth-promoting Effect of Pharmacological Level of Zine in Pigs. Acta Veterinaria et Zootechnica Sinica, 32(1): 11-17.