بررسی تغییرات بیان ژن G-CSF و ISG-15 در سلول های چند هسته ای خون محیطی گاوهای آبستن و مبتلا به مرگ رویانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری عمومی دامپزشکی، دانشکده دامپزشکی، دانشگاه سراسری تبریز، تبریز، ایران

2 گروه علوم درمانگاهی دانشکده دامپزشکی دانشگاه تبریز

3 گروه پاتوبیولوژی دانشکده دامپزشکی دانشگاه تبریز

چکیده

سابقه و هدف: از دست دادن آبستنی در مراحل مختلف آبستنی می‌تواند به دلایل مختلفی اتفاق بیفتد، اما افزایش میزان مرگ و میر رویانی در مراحل اولیه آبستنی یکی از چالش‌های صنعت پرورش گاو شیری در حال حاضر است. محرک کلونی گرانولوسیت‌هاG-CSF) ) یکی از سایتوکاین‌های‌ خونساز است که عمدتاً توسط سلول‌های منوسیت و ماکروفاژ تولید و موجب تکثیر و تمایز سلول‌های خونساز میلوییدی می‌شود. ISG-15 به عنوان یک همولوگ یوبیکویتین داخل سلولی و نیز به عنوان یک سایتوکاین خارج سلولی عمل می‌کند که ممکن است به عنوان یک نشانگر اولیه آبستنی در نشخوارکنندگان عمل کند. این سایتوکاین‌ها همزمان‌ با تولید اینترفرون‌ها در رحم در خون محیطی افزایش می‌یابند. در مطالعه حاضر تشخیص آبستنی در مراحل اولیه آن توسط سایتوکاین هایی از جمله G-CSFو ISG-15 مورد بررسی قرار گرفت. لذا هدف از این پژوهش، مقایسه تغییرات بیان این ژن در دام‌های آبستن ، غیرآبستن دچار مرگ زودرس یا دیررس جنینی در گاو شیری است. مواد و روش ها: نمونه خون از 30 رأس دام مبتلا به مرگ رویانی( برای هر گروه زمانی 10 رأس) و 30 رأس دام آبستن طبیعی( برای هر گروه زمانی 30 رأس) در لوله‌های خلأ حاوی ماده ضد انعقاد EDTA، در روزهای 15 تا 24، 25 تا 34 و 35 تا 44 پس از تلقیح اخذ شد. دام‌ها به دو گروه آبستن و غیرآبستن بر اساس غلظت پروژسترون در روز 21 تقسیم شدند، سپس گاوهای غیرآبستن نیز به دام‌ها با مرگ زودرس جنین (روز 1 تا26) و مرگ دیررس جنین (روز 26 تا 45) طبقه‌بندی شدند. سپس نسبت به استخراج نوتروفیل‌ها از نمونه خون اقدام و بیان ژن G-CSF وISG-15 با استفاده از تکنیک Real-Time PCR اندازه‌گیری شد. یافته‌ها: نتایج نشان داد غلظت پروژسترون در پلاسمای خون گاوهای آبستن در فاصله‌ی زمانی 15 تا 24، 25 تا 34 و 35 تا 44 روز بعد از تلقیح مصنوعی به طور معنی‌داری نسبت به گاوهای غیرآبستن بیشتر بود. غلظت گلوکز در پلاسمای خون گاوهای آبستن، در فاصله زمانی 15 تا 24 نسبت به فواصل زمانی 25 تا 34 و 35 تا 44، به طور معنی‌داری نسبت به غلظت گلوکز پلاسمای خون گاوهای غیرآبستن بالاتر بود (001/0P<). غلظت کلسترول در فاصله‌ی زمانی 25 تا 34 بعد از تلقیح مصنوعی در پلاسمای گاوهای آبستن تفاوت آماری معنی‌داری (05/0P<) با غلظت کلسترول در پلاسمای خون گاوهای غیرآبستن داشت. بررسی غلظت تری‌گلیسرید در پلاسمای خون گاو آبستن در فاصله زمانی 15 تا 24، 25 تا 34 و 35 تا 44 روز بعد از تلقیح تفاوت آماری معنی‌داری با غلظت تری‌گلسیرید پلاسمای خون گاوهای غیرآبستن در همان روزها نداشت (05/0P<). بیشترین مقدار بیان ژن G-CSF در فاصله زمانی 15 تا 24 در نوتروفیل خون گاوهای آبستن مشاهده شد. همچنین، بیشترین مقدار بیان ژن ISG-15 در فاصله زمانی 35 تا 44 روز بعد از تلقیح مشاهده شد. نتیجه‌گیری: نتایج این مطالعه نشان داد این ژن‌ها می توانند به عنوان تشخیص مرگ زودرس و دیررس جنینی کاربرد بالینی داشته باشند

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating changes in G-CSF and ISG-15 gene expression in peripheral blood polynuclear cells of dairy cows with normal pregnancy and embryonic death

نویسندگان [English]

  • Salar Farshbaf Nobarian 1
  • Reza Asadpour 2
  • Masoumeh Firouzamandi 3
  • Fereydon Rezazadeh 2
  • Shokoufeh Zakeri Rostam 1
1 DVM Graduated, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
2 Department of clinical science faculty of veterinary medicine university of Tabriz
3 Department of Pathobiology , Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
چکیده [English]

Background and objectives: Pregnancy loss can occur in different stages of pregnancy for various reasons; however, the increase in embryonic mortality in the early stages of pregnancy is currently a concern in the dairy cow industry. Granulocyte-Colony Stimulating Factor (G-CSF) is a hematopoietic cytokine that is mainly produced by monocytes and macrophages and causes the proliferation and differentiation of myeloid hematopoietic cells. Interferon-Stimulated Gene-15 (ISG-15) functions as an intracellular ubiquitin homologue and extracellular cytokine that may serve as a surrogate marker for early pregnancy in ruminants. It is assumed that these cytokines increase in the peripheral blood simultaneously with the production of interferons in the uterus. The present study was an attempt to shorten the number of open days in dairy cows by detecting pregnancy in the early stages of pregnancy using cytokines such as G-CSF and ISG-15. Therefore, this study aimed to compare the gene expression changes between pregnant and non-pregnant dairy cows with early or late embryonic death, so that open days can be reduced in dairy cows. Material and methods: Blood samples from 30 animals with embryonic death (10 cows for each time group) and 30 cows with normal pregnancy (30 cows for each time group) were collected in vacuum tubes containing EDTA anticoagulant on days 15–24, 25–34, and 35–44 after inoculation. Cows were divided into pregnant and non-pregnant groups based on progesterone concentration on day 21, and non-pregnant cows were classified into those with early embryonic death (day 1-26) and late embryonic death (day 26-45). Neutrophils were then extracted from the blood samples, and G-CSF and ISG-15 gene expression was measured using Real-Time PCR. Results: The results showed that the concentration of progesterone in the blood plasma of pregnant cows was significantly higher than that of non-pregnant cows in the time interval of 15 to 24, 25 to 34 and 35 to 44 days after artificial insemination. The concentration of glucose in the blood plasma of pregnant cows between 15 and 24 h (P<0.001) was significantly higher in the time intervals of 25 to 34 days and 35 to 44 days, compared to the concentration of glucose in the blood plasma of non-pregnant cows. Cholesterol concentration in the plasma of pregnant cows between 25 and 34 days after artificial insemination (AI) showed a statistically significant difference (P<0.05) from the cholesterol concentration in the blood plasma of non-pregnant cows. Examination of the concentration of triglycerides in the blood plasma of pregnant cows at 15–24, 25–34, and 35–44 days after inoculation showed no statistically significant difference from the concentration of triglycerides in the blood plasma of non-pregnant cows on the same days. The highest level of G-CSF gene expression was observed between days 15 and 24 in the blood neutrophils of pregnant cows. In addition, the highest ISG-15 expression was observed between 35 and 44 days after inoculation. Conclusion: The results of the present study showed that these genes can be used clinically to diagnose early and late embryonic death.

کلیدواژه‌ها [English]

  • Interferon stimulating gene
  • Peripheral blood mononuclear cell
  • Granulocyte colony-stimulating factor
  • Embryonic death
Abbitt, B., Ball, L., Kitto, G. P., Sitzman, C. G., Wilgenburg, B., Raim, L. W. & Seidel Jr, G. E. (1978). Effect of three methods of palpation for pregnancy diagnosis per rectum on embryonic and fetal attrition in cows. Journal of the American Veterinary Medical Association, 173(8): 973-977.
Abdullah, M., Mohanty, T. K., Kumaresan, A., Mohanty, A. K., Madkar, A. R., Baithalu, R. K. & Bhakat, M. (2014). Early pregnancy diagnosis in dairy cattle: economic importance and accuracy of ultrasonography. Advances in Animal and Veterinary Sciences, 2(8): 464-467.
Austin, K. J., Bany, B. M., Belden, E. L., Rempel, L. A., Cross, J. C. & Hansen, T. R. (2003). Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Endocrinology, 144(7): 3107-3113.
Austin, K. J., Carr, A. L., Pru, J. K., Hearne, C. E., George, E. L., Belden, E. L. & Hansen, T. R. (2004). Localization of ISG15 and conjugated proteins in bovine endometrium using immunohistochemistry and electron microscopy. Endocrinology, 145(2): 967-975.
Austin, K. J., King, C.P., Vierk, J.E., Sasser, R.G. & Hansen, T.R. (1999). Pregnancy-specific protein B induces release of an alpha chemokine in bovine endometrium. Endocrinology, 140(1): 542-545.
Ayalon, N. (1978). A review of embryonic mortality in cattle. Reproduction, 54(2), 483-493.
Bagley, C. J., Woodcock, J.M., Stomski, F.C. & Lopez, A.F. (1997). The structural and functional basis of cytokine receptor activation: lessons from the common β subunit of the granulocyte-macrophage colony-stimulating factor, Interleukin-3 (IL-3), and IL-5 receptors. Blood, The Journal of the American Society of Hematology, 89(5): 1471-1482.
Baldwin, G.C., Benveniste, E.N., Chung, G.Y., Gasson, J.C. & Golde, D.W. (1993). Identification and characterization of a high-affinity granulocyte-macrophage colony-stimulating factor receptor on primary rat oligodendrocytes. Blood, 82 (11): 3279-3282.
Balhara, A.K., Gupta, M., Singh, S., Mohanty, A.K. & Singh, I. (2013). Early pregnancy diagnosis in bovines: current status and future directions. The Scientific World Journal, 2013.
Bazer, F.W., Burghardt, R.C., Johnson, G.A., Spencer, T.E. & Wu, G. (2008). Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reproductive Biology, 8(3): 179-211.
Bazer, F.W., Thatcher, W.W., Hansen, P. J., Mirando, M.A., Ott, T.L. & Plante, C. (1991). Physiological mechanisms ofpregnancy recognition in ruminants. Journals of Reproduction & Fertility Ltd, 43: 39-47.
Beal, W.E., Perry, R.C. & Corah, L.R. (1992). The use of ultrasound in monitoring reproductive physiology of beef cattle. Journal of Animal Science, 70(3): 924-929.
Bebington, C., Doherty, F.J. & Fleming, S.D. (1999). Ubiquitin cross-reactive protein gene expression is increased in decidualized endometrial stromal cells at the initiation of pregnancy. Molecular Human Reproduction, 5(10): 966-972.
Booth, P.J., Collins, M.E., Jenner, L., Prentice, H., Ross, J., Badsberg, J. H. & Brownlie, J. (1998). Noncytopathogenic bovine viral diarrhea virus (BVDV) reduces cleavage but increases blastocyst yield of in vitro produced embryos. Theriogenology, 50(5): 769-777.
Bott, R. C., Ashley, R. L., Henkes, L. E., Antoniazzi, A. Q., Bruemmer, J. E., Niswender, G. D. & Hansen, T. R. (2010). Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biology of Reproduction, 82(4): 725-735.
Brännström, M., Norman, R. J., Seamark, R. F. & Robertson, S. A. (1994). Rat ovary produces cytokines during ovulation. Biology of Reproduction, 50(1): 88-94.
Bridges, G. A., Day, M. L., Geary, T. W. & Cruppe, L. H. (2013). Triennial Reproduction Symposium: deficiencies in the uterine environment and failure to support embryonic development. Journal of Animal Science, 91(7): 3002-3013.
Cartmill, J. A., El-Zarkouny, S. Z., Hensley, B. A., Lamb, G. C. & Stevenson, J. S. (2001). Stage of cycle, incidence, and timing of ovulation, and pregnancy rates in dairy cattle after three timed breeding protocols. Journal of Dairy Science, 84(5): 1051-1059.
Carvalho, P. D., Consentini, C. C., Weaver, S. R., Barleta, R. V., Hernandez, L. L. & Fricke, P. M. (2017). Temporarily decreasing progesterone after timed artificial insemination decreased expression of interferon-tau stimulated gene 15 (ISG15) in blood leukocytes, serum pregnancy-specific protein B concentrations, and embryo size in lactating Holstein cows. Journal of Dairy Science, 100(4): 3233-3242.
Chaouat, G., Menu, E., Clark, D. A., Dy, M., Minkowski, M. & Wegmann, T. G. (1990). Control of fetal survival in CBA x DBA/2 mice by lymphokine therapy. Journal of Reproduction and Fertility, 89(2): 447–458.
Cordoba, M. C., Sartori, R. & Fricke, P. M. (2001). Assessment of a commercially available early conception factor (ECF) test for determining pregnancy status of dairy cattle. Journal of Dairy Science, 84(8): 1884-1889.
Current, J.Z. (2023). The Investigation of Novel Bovine Oocyte-Specific Long Non-coding RNAs and Their Roles in Oocyte Maturation and Early Embryonic Development (Doctoral dissertation, West Virginia University).
Ding, J., Wang, J., Cai, X., Yin, T., Zhang, Y., Yang, C. & Yang, J. (2022). Granulocyte colony-stimulating factor in reproductive-related disease: Function, regulation and therapeutic effect. Biomedicine & Pharmacotherapy, 150: 112903.
Diskin, M. G. & Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reproduction in Domestic Animals, 43: 260-267.
Diskin, M. G., Waters, S. M., Parr, M. H. & Kenny, D. A. (2016). Pregnancy losses in cattle: potential for improvement. Reproduction, Fertility, and Development, 28(1-2): 83–93.
Forde, N., Bazer, F. W., Spencer, T. E. & Lonergan, P. (2015). ‘Conceptualizing’the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biology of Reproduction, 92(6): 156-1.
Franco, G. A., Peres, R. F. G., Martins, C. F. G., Reese, S. T., Vasconcelos, J. L. M. & Pohler, K. G. (2018). Sire contribution to pregnancy loss and pregnancy-associated glycoprotein production in Nelore cows. Journal of Animal Science, 96(2): 632-640.
Fricke, P. M. (2002). Scanning the future—Ultrasonography as a reproductive management tool for dairy cattle. Journal of Dairy Science, 85(8): 1918-1926.
Gandy, B., Tucker, W., Ryan, P., Williams, A., Tucker, A., Moore, A. & Willard, S. (2001). Evaluation of the early conception factor (ECF™) test for the detection of nonpregnancy in dairy cattle. Theriogenology, 56(4): 637-647.
Ghojoghi, S.h., Samadi, F. & Hasani, S. (2013) Cmparison of blood serum biochemical compositions and ovarian follicular fluid of different-sized follicles in dairy cows. Research on Animal Production, 4(7): 106-123.(In Persian).
Gifford, C. A., Racicot, K., Clark, D. S., Austin, K. J., Hansen, T. R., Lucy, M. C. & Ott, T. L. (2007). Regulation of interferon-stimulated genes in peripheral blood leukocytes in pregnant and bred, nonpregnant dairy cows. Journal of Dairy Science, 90(1): 274-280.
Grummer, R. R. (1993). Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science, 76(12): 3882-3896.
Han, H., Austin, K. J., Rempel, L. A. & Hansen, T. R. (2006). Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. Journal of Endocrinology, 191(2): 505-512.
Hansen, P. J. (1997). Interactions between the immune system and the bovine conceptus. Theriogenology, 47(1): 121-130.
Hansen, T. R., Sinedino, L. D. & Spencer, T. E. (2017). Paracrine and endocrine actions of interferon tau (IFNT). Reproduction, 154(5); F45-F59.
Haq, I. U., Han, Y., Ali, T., Wang, Y., Gao, H., Lin, L. & Zeng, S. (2016). Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle. Reproductive Biology, 16(4): 255-260.
Hill, A. D., Naama, H. A., Calvano, S. E. & Daly, J. M. (1995). The effect of granulocyte-macrophage colony-stimulating factor on myeloid cells and its clinical applications. Journal of Leucocyte Biology, 58(6): 634-642.
Işık, G., Oktem, M., Guler, I., Oktem, E., Ozogul, C., Saribas, S., Erdem, A. & Erdem, M.E.H.M.E.T.(2021). The impact of granulocyte colony-stimulating factor (G-CSF) on thin endometrium of an animal model with rats. Gynecological Endocrinology, 37(5): 438-445.
Jain, A., Baviskar, P. S., Kandasamy, S., Kumar, R., Singh, R., Kumar, S. & Mitra, A. (2012). Interferon stimulated gene 15 (ISG15): Molecular characterization and expression profile in endometrium of buffalo (Bubalus bubalis). Animal Reproduction Science, 133(3-4): 159-168.
Johnson, G.A., Austin, K.J., Van Kirk, E.A. & Hansen, T.R. (1998). Pregnancy and interferon-tau induce conjugation of bovine ubiquitin cross-reactive protein to cytosolic uterine proteins. Biology of Reproduction, 58: 898–904.
Kim, D., Kim, M., Kang, H., Lee, H., Park, W. & Kwon, H. (2001). The supplementation of granulocyte-macrophage colony-stimulating factor (GM-CSF) in culture medium improves the pregnancy rate in human ART programs. Fertility and Sterility, 76(3): S6.
Kiyma, Z., Kose, M., Atli, M. O., Ozel, C., Hitit, M., Sen, G. & Guzeloglu, A. (2016). Investigation of interferon-tau stimulated genes (ISGs) simultaneously in the endometrium, corpus luteum (CL) and peripheral blood leukocytes (PBLs) in the preluteolytic stage of early pregnancy in ewes. Small Ruminant Research, 140: 1-6.
Kose, M., Kaya, M. S., Aydilek, N., Kucukaslan, I., Bayril, T., Bademkiran, S. & Atli, M. O. (2016). Expression profile of interferon tau–stimulated genes in ovine peripheral blood leukocytes during embryonic death. Theriogenology, 85(6): 1161-1166.
Kutlu, M. & Dinç, D. A. (2020). Comparison of the effects of two pre-synchronization protocols (G6G and PG-3-G) on some reproductive performance parameters in Holstein cows. Eurasian Journal of Veterinary Sciences, 36(4):248-254.
Lidfors, L., Gunnarsson, S., Algers, B., Emanuelson, U., Berglund, B., Andersson, G., Håård, M., Lindhé, B., Stålhammar, H. & Gustafsson, H. (2008). Reproductive performance in high-producing dairy cows: can we sustain it under current practice?. IVIS Reviews in Veterinary Medicine, IVIS (Ed.). International Veterinary Information Service, Ithaca NY (www. ivis. org). Last updated.
Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4): 402-408.
Lucy, M. C. (2001). Reproductive loss in high-producing dairy cattle: where will it end ?. Journal of Dairy Science, 84(6): 1277-1293.
Makinoda, S., Mikuni, M., Furuta, I., Okuyama, K., Sagawa, T. & Fujimoto, S. (1995). Serum concentration of endogenous G‐CSF in women during the menstrual cycle and pregnancy. European Journal of Clinical Investigation, 25(11): 877-879.
Mann, G.E., Lamming, G.E. & Payne, J.H. (1998). Role of early luteal phase progesterone in control of the timing of the luteolytic signal in cows. Reproduction, 113(1): 47-51.
Mauffré, V., Grimard, B., Eozenou, C., Inghels, S., Silva, L., Giraud-Delville, C. & Constant, F. (2016). Interferon stimulated genes as peripheral diagnostic markers of early pregnancy in sheep: a critical assessment. Animal, 10(11): 1856-1863.
Mehrzad, J., Dosogne, H., Meyer, E., Heyneman, R. & Burvenich, C. (2001). Respiratory burst activity of blood and milk neutrophils in dairy cows during different stages of lactation. Journal of Dairy Research, 68(3): 399-415.
Meyerholz, M. M., Mense, K., Knaack, H., Sandra, O. & Schmicke, M. (2016). Pregnancy‐Induced ISG‐15 and MX‐1 Gene Expression is Detected in the Liver of Holstein–Friesian Heifers During Late Peri‐Implantation Period. Reproduction in Domestic Animals, 51(1): 175-177.
Moore, K. & Thatcher, W. W. (2006). Major advances associated with reproduction in dairy cattle. Journal of Dairy Science, 89(4): 1254-1266.
Oliveira, J. F., Henkes, L. E., Ashley, R. L., Purcell, S. H., Smirnova, N. P., Veeramachaneni, D. R. & Hansen, T. R. (2008). Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-τ release from the uterine vein. Endocrinology, 149(3): 1252-1259.
Parmar, S. C., Dhami, A. J., Hadiya, K. K. & Parmar, C. P. (2016). Early embryonic death in bovines: an overview. Raksha Tech Rev, 6 1: 6-12.
Pereira, M. H. C., Wiltbank, M. C. & Vasconcelos, J. L. M. (2016). Expression of estrus improves fertility and decreases pregnancy losses in lactating dairy cows that receive artificial insemination or embryo transfer. Journal of Dairy Science, 99(3): 2237-2247.
Pohler, K. G., Franco, G. A., Reese, S. T., Dantas, F. G., Ellis, M. D. & Payton, R. R. (2016). Past, present and future of pregnancy detection methods. Applied Reproductive Strategies in Beef Cattle, 7-8.
Pohler, K. G., Green, J. A., Geary, T. W., Peres, R. F. G., Pereira, M. H. C., Vasconcelos, J. L. M. & Smith, M. F. (2015). Predicting embryo presence and viability. Regulation of Implantation and Establishment of Pregnancy in Mammals: Tribute to 45 Year Anniversary of Roger V. Short's" Maternal Recognition of Pregnancy", 253-270.
Pohler, K. G., Peres, R. F. G., Green, J. A., Graff, H., Martins, T., Vasconcelos, J. L. M. & Smith, M. F. (2016). Use of bovine pregnancy-associated glycoproteins to predict late embryonic mortality in postpartum Nelore beef cows. Theriogenology, 85(9): 1652-1659.
Rempel, L. A., Francis, B. R., Austin, K. J. & Hansen, T. R. (2005). Isolation and sequence of an interferon-τ-inducible, pregnancy-and bovine interferon-stimulated gene product 15 (ISG15)-specific, bovine ubiquitin-activating E1-like (UBE1L) enzyme. Biology of Reproduction, 72(2): 365-372.
Robertson, S. A., Chin, P. Y., Glynn, D. J. & Thompson, J. G. (2011). Peri‐conceptual cytokines–setting the trajectory for embryo implantation, pregnancy and beyond. American Journal of Reproductive Immunology, 66: 2-10.
Robertson, S. A., Mayrhofer, G. & Seamark, R. F. (1996). Ovarian steroid hormones regulate granulocyte-macrophage colony-stimulating factor synthesis by uterine epithelial cells in the mouse. Biology of Reproduction, 54(1): 183–196.
Robertson, S. A., Roberts, C. T., Farr, K. L., Dunn, A. R. & Seamark, R. F. (1999). Fertility impairment in granulocyte-macrophage colony-stimulating factor-deficient mice. Biology of Reproduction, 60(2): 251–261.
Rychlik, W. (2007). Oligo 7 primer analysis software. PCR primer design, 35-59.
 
Sheikh, A. A., Hooda, O. K., Kalyan, A., Kamboj, A., Mohammed, S., Alhussien, M. & Dang, A. K. (2018). Interferon-tau stimulated gene expression: A proxy to predict embryonic mortality in dairy cows. Theriogenology, 120: 61-67.
Shirasuna, K., Akabane, Y., Beindorff, N., Nagai, K., Sasaki, M., Shimizu, T. & Miyamoto, A. (2012). Expression of prostaglandin F2α (PGF2α) receptor and its isoforms in the bovine corpus luteum during the estrous cycle and PGF2α-induced luteolysis. Domestic Animal Endocrinology, 43(3): 227-238.
Silke, V., Diskin, M. G., Kenny, D. A., Boland, M. P., Dillon, P., Mee, J. F. & Sreenan, J. M. (2002). Extent, pattern and factors associated with late embryonic loss in dairy cows. Animal Reproduction Science, 71(1-2): 1–12.
Sjöblom, C., Roberts, C. T., Wikland, M. & Robertson, S. A. (2005). Granulocyte-Macrophage Colony-Stimulating Factor Alleviates Adverse Consequences of Embryo Culture on Fetal Growth Trajectory and Placental Morphogenesis. Endocrinology, 146(5): 2142-2153.
Soumya, N. P., Das, D. N., Jeyakumar, S., Mondal, S., Mor, A. & Mundhe, U. T. (2017). Differential expression of ISG 15 mRNA in peripheral blood mononuclear cells of nulliparous and multiparous pregnant versus non‐pregnant Bos indicus cattle. Reproduction in Domestic Animals, 52(1): 97-106.
Sreenan, J. M. & Diskin, M. G. (1986). The extent and timing of embryonic mortality in the cow. In Embryonic Mortality in Farm Animals (pp. 1-11). Dordrecht: Springer Netherlands.
Szenci, O., Beckers, J. F., Humblot, P., Sulon, J., Sasser, G., Taverne, M. A. M., & Schekk, G. (1998). Comparison of ultrasonography, bovine pregnancy-specific protein B, and bovine pregnancy-associated glycoprotein 1 tests for pregnancy detection in dairy cows. Theriogenology, 50(1): 77-88.
Vaillancourt, D., Bierschwal, C. J., Ogwu, D., Elmore, R. G., Martin, C. E., Sharp, A. J. & Youngquist, R. S. (1979). Correlation between pregnancy diagnosis by membrane slip and embryonic mortality. Journal of the American Veterinary Medical Association, 175(5): 466-468.
Vanroose, G., de Kruif, A. & Van Soom, A. (2000). Embryonic mortality and embryo–pathogen interactions. Animal Reproduction Science, 60: 131-143.
Vasconcelos, J. L. M., Silcox, R. W., Lacerda, J. A., Pursley, J. R. & Wiltbank, M. C. (1997). Pregnancy rate, pregnancy loss, and response to head stress after AI at 2 different times from ovulation in dairy cows. Biology of Reproduction, 230-230.
Wilmut, I. & Sales, D. I. (1981). Effect of an asynchronous environment on embryonic development in sheep. Reproduction, 61(1): 179-184.
Wiltbank, M. C., Baez, G. M., Garcia-Guerra, A., Toledo, M. Z., Monteiro, P. L., Melo, L. F. & Sartori, R. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 86(1): 239-253.
Xie, Y., Tian, Z., Qi, Q., Li, Z., Bi, Y., Qin, A. & Yang, Y. (2020). The therapeutic effects and underlying mechanisms of the intrauterine perfusion of granulocyte colony-stimulating factor on a thin-endometrium rat model. Life Sciences, 260: 118439.
Zambrano, A., Jara, E., Murgas, P., Jara, C., Castro, M. A., Angulo, C. & Concha, I. I. (2010). Cytokine stimulation promotes increased glucose uptake via translocation at the plasma membrane of GLUT1 in HEK293 cells. Journal of Cellular Biochemistry, 110(6): 1471-1480.
Zhao, Y. & Chegini, N. (1994). Human fallopian tube expresses granulocyte-macrophage colony stimulating factor (GM-CSF) and GM-CSF alpha and beta receptors and contain immunoreactive GM-CSF protein. The Journal of Clinical Endocrinology and Metabolism, 79(2): 662–665.