پیش‌بینی تولید شیر گاو هلشتاین با استفاده از شبکه‌های عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

3 استادیار، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

4 استادیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

5 دانش آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

چکیده

سابقه و هدف: در این تحقیق، از شبکه‌های عصبی مصنوعی برای پیش‌بینی تولید شیر گاو هلشتاین در ماه‌‌های چهارم‌، پنجم، دهم و کل تولید شیر در یک دوره‌ی شیردهی 305 روز استفاده شد.
مواد و روش‌ها: پایگاه اولیه ی داده‌ها شامل 274025 رکورد تولید شیر حاصل از 7201 رأس گاو هلشتاین یک تا چهار شکم زایش از دو گله‌ی پرورشی بود. پس از ویرایش داده‌های تولیدی، در نهایت از‌ 87980 رکورد تولید شیر ماهانه در قالب 8798 ردیف داده که هر ردیف شامل گله، سن، شکم، ماه تولید، رکورد تولید شیر اول ماهانه‌ی دام تا رکورد تولید شیر ماه دهم دام و تولید کل دام در یک دوره شیردهی 305 روز بود به‌عنوان مخزن نهایی داده‌ها مورد استفاده قرار گرفت. از مجموع این داده‌ها، 50% برای آموزش شبکه، 20% برای اعتبارسنجی و 30% نیز برای آزمون شبکه عصبی مصنوعی در نظر گرفته شد. برای پیش‌بینی تولید شیر از ساختارهای گوناگون شبکه‌های عصبی مصنوعی با روش آموزش با ساختار پرسپترون چندلایه با الگوریتم پس انتشار خطا، استفاده شد. جهت تعیین شبکه‌ی بهینه از سه تابع فعالیت (تانژانت هیپربولیک آکسون، سیگموئید آکسون، تانژانت هیپربولیک خطی آکسون) و سه الگوریتم پس انتشار مومنتوم، گرادیان نزولی و لونبرگ مارکوات در هر دو لایه‌ی پنهان و خروجی استفاده شد. از معیارهای ضریب تبیین، مجذور میانگین مربعات خطا و میانگین خطای مطلق برای مقایسه الگوریتم‌ها استفاده شد.
یافته‌ها: در پیش‌بینی رکورد تولید شیر در ماه چهارم و پنجم تولید دام بر اساس سه رکورد اول ماهانه‌ی تولید شیر، به‌ترتیب ساختار شبکه با الگوریتم لونبرگ مارکوات و تابع فعالیت سیگموئید آکسون و ساختار شبکه با الگوریتم لونبرگ مارکوات و تابع فعالیت تانژانت هیپربولیک آکسون بهترین عملکرد را نشان دادند. برای این ساختارها، ضریب تبیین دارای بیشترین مقدار (به‌ترتیب 725/0 و 642/0)، مجذور میانگین مربعات خطا دارای کمترین مقدار ( به‌ترتیب 785/4 و 345/5) و میانگین خطای مطلق دارای کمترین مقدار (به‌ترتیب 715/3 و 057/4) بود. در پیش‌بینی رکورد دهم تولید شیر دام بر اساس سه و یا چهار رکورد اول ماهانه‌ی تولید شیر، هیچ یک از ساختارهای شبکه توانایی پیش‌بینی موفق را نداشتند. در پیش‌بینی کل تولید شیر بر اساس سه رکورد اول تولید شیر با استفاده از الگوریتم لونبرگ مارکوات با تابع فعالیت تانژانت هیپربولیک آکسون دارای بهترین عملکرد بود. بطوری که، ضریب تبیین، مجذور میانگین مربعات خطا و میانگین خطای مطلق به‌ترتیب 799/0، 14/984 و 21/790 بودند. همین ساختار شبکه‌ی عصبی مصنوعی در پیش‌بینی کل تولید شیر یک دوره شیردهی بر اساس چهار و یا پنج رکورد اول موفق‌ترین ساختار بود و ضریب تبیین، مجذور میانگین مربعات خطا و میانگین خطای مطلق به‌ترتیب 856/0، 98/850 و 33/653 در استفاده از چهار رکورد اول تولید شیر و 904/0، 59/706 و 69/548 در استفاده از پنج رکورد اول به‌دست آمد.
نتیجه‌گیری: شبکه‌ عصبی مصنوعی طراحی شده در این آزمایش با ضریب همبستگی 84/0 توان پیش‌بینی تولید شیر دام‌ها در ماه چهارم شیردهی را داشت. از طرفی شبکه عصبی طراحی شده توانست کل تولید شیر حیوان در یک دوره شیردهی 305 روز را با دقت مناسبی پیش‌بینی کند. به طوری که ضرایب همبستگی در استفاده از سه، چهار و پنج رکورد ماهانه اول دام‌ها جهت پیش‌بینی به‌ترتیب 89/0، 92/0 و 95/0 بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of artificial neural networks to predict milk production in Holstein cows

نویسندگان [English]

  • Rashid Safari 1
  • Mohammadreza Sheikhlou 2
  • Mohammad Esmaeilpour 3
  • Hamed Jafarzadeh 4
  • Atefeh Sheikhali Pour 5
1 Assistant prof., Dept. of Animal Sciences, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran
2 Associated prof.,, Dept. of Animal Sciences, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran
3 Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran
4 Assistant prof., Dept. of Animal Sciences, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran
5 MSc. Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran
چکیده [English]

Background and Objectives: In this study artificial neural network (ANN) used to predict milk test day records at 4th, 5th, 10th months of lactation duration and 305-day milk yield in Holstein dairy cows.
Materials and Methods: Primary data source was consisting of 274025 milk production records of 7201 primiparuse to fourth birth Holstein cows, from two herd. Final source of data obtained from milk production records was consist of 87980 monthly milk test day records in 8798 rows which each row contains number of animal, herd, age, lactation, month of production, first to tenth monthly milk production records and 305-day milk yield. From the total of data, 50% was considered for neural network training, 20% for validation and 30% for testing. A multilayer perceptron (MLP) network with back propagation of error learning mechanism (BP) was used through different artificial neural network (ANN) structures to predict milk production. In order to optimize artificial neural network (ANN) structure three activation functions (hyperbolic tangent axon, sigmoid axon or linear hyperbolic tangent axon) and three back propagation algorithms viz. momentum, conjugate gradient (CG) and Leven-berg–Marquardt (LM) Training algorithms used in the hidden layer as well as in the output layer. Coefficient of determination, root of mean square error and mean absolute error were used to compare algorithms.
Results: In prediction of milk production of 4th and 5th monthly test day records, LM algorithm with sigmoid axon activation functions and LM Training algorithm, with hyperbolic tangent Axon functions had the best performance between network structures respectively. In these net work structures R2 were highest (0.725 and 0.642 respectively), RMSEs were lowest (4.785 and 5.345 respectively) and MAEs were lowest (3.715and 4.057 respectively). In prediction of 10th monthly test day milk production through three or four monthly test day records, obtained from the same lactation period, none of the structures had ability to predict milk production successfully. In prediction of 305-day milk yield, LM algorithm and hyperbolic tangent activation function had the best prediction through 3 test day records and R2, RMSE and MAE as performance criteria were 0.799, 984.14 and 790.21 respectively. Also the same structure of the network had the best performance to predict 305-day milk yield through four or five initial test day records and performance criteria, Coefficient of determination, root of mean square error and mean absolute error were 0.856, 850.98 and 653.33 respectively, in ANN with four test day record as input variables and 0.904, 706.59 and 548.69 respectively, in ANN with five test day record as input variables, respectively.
Conclusion: The artificial neural network designed in this study was able to predict the milk production of animals in the fourth month of lactation with a correlation coefficient of 0.84. On the other hand, the designed neural network was able to predict the total milk production of the animal in a lactation period of 305 days with appropriate accuracy. So that the correlation coefficients in using the first three, four and five monthly records of livestock for prediction were 0.89, 0.92 and 0.95 respectively.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Holstein cows
  • Milk production prediction
Adamczyk, K., Grzesiak, W. & Zaborski, D. (2021). The Use of Artificial Neural Networks and a General Discriminant Analysis for Predicting Culling Reasons in Holstein-Friesian Cows Based on First-Lactation Performance Records. Animals, 11: 1-18.
Akilli, A. & Atil, H. (2014). Artificial intelligence technologies in dairy science: fuzzy logic and artificial neural network. Journal of Animal Production, 55(1):39–45.
Chaturvedi, S., Yadav, R.L., Gupta, A.K. & Sharma, A.K. (2013). Life Time Milk Amount Prediction in Dairy Cows using Artificial Neural Networks. International Journal Research and Review, 5: 1-6.
Dongre, V.B., Gandhi, R.S., Singh, A. & Ruhil, A.P. (2012). Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle. Livestock Science, 147: 192-197.
Fernández, C., Soriab, E., Sánchez-Seiquera, P., Gómez-Chovab, L., Magdalenab, R., Martínb, J. D., Navarroc, M. J. & Serrano A. J. (2006). Weekly milk prediction on dairy goats using neural networks. Neural Computing and Applications, 16: 373-381.
Ghotbaldini, H.R., Mohammadabadi, M.R. & Nezamabadi Pour, H. (2016). Using Artificial Intelligence to Estimate the Correction Value of Birth and 3-Month-Old Weights of Kermani Breed Sheep. Modern Genetics, 12: 323-331.
Görgülü, Ö. (2012). Prediction of 305-day milk yield in brown swiss cattle using artificial neural networks. South African Journal of Animal Science, 42(3): 280–7.
Hasani Baferani, A. & Pishkar, J. (2014). Registration of specifications, recording and evaluation of dairy cattle type. Institute of Applied Scientific Education of Jihad Agriculture Press, 260 p. (In Persian).
Izadkhah, R., Farhangfar, H., Fathi Nasri, M. H. & Naeemipour Younesi, H. (2011). Application of Wilmink’s Exponential Function in Genetic Analysis of 305-d Milk Production and Lactation Persistency in Holstein Cows of Razavi Khorasan. Iranian Journal of Animal Science Research, 3: 297-303. (In Persian).
Khazaei, J., Nikosiar, M., Nagatsuka, T. & Ninomiya, S. (2008). Approximating Milk Yield and Milk Fat and Protein Concentration of Cows through the Use of Mathematical and Artificial Neural Networks Models. The World Conference on Agricultural Information and IT, Tokya, Japan, 91- 105.
Khairunniza Bejo, S., Mustaffha, S., Khairunniza-Bejo, S., Ishak, W. & Ismail, W. (2014). Application of Artificial Neural Network in Predicting Crop Yield. Journal of Food Science Enginearing, 4: 1–9.
Kumar, H. & Hooda, B.K. (2014). Prediction of milk production using artificial neural network. Advances in Agriculture and Environmental Science, 6(2):173–5.
Montazer Torbati, M., Moradi Shahr Babak, M., Mirai Ashtiani, R. & Seidenjad, M. (2012). Sustainability Criteria in Holstein Cows of Iran, the First Seminar on Genetics and Breeding of Livestock, Poultry and Fisheries, Tehran, Iran. (In Persian).
Nobari, K., Bane, H., Esmaeilkhanian, S., Yousefi, K. & Samiei, R. (2019). Comparison of linear model and Artificial Neural Network to Prediction of Milk Yield Using First Recorded Parity. Journal of Ruminant Research, 6(4): 89-100. (In Persian).
Pour Hamidi, S., Mohammadabadi, M. R., Asadi Foozi, M. & Nezamabadi-pour, H. (2017). Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. Journal of Livestock Science and Technologies, 5(2), 53-61.
Radwan, H., El Qaliouby, H. & Elfadl, E. (2020). Classification and prediction of milk yield level for Holstein Friesian cattle using parametric and non-parametric statistical classification models. Journal of Advanced Veterinary and Animal Research, 7(3): 429-435.
Sharma, A., Sharma, R.K. & Kasana, H.S. (2006). Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows. Neural Computing and Applications, 15: 359-365.
Sharma, S. K. & Kumar, S. (2014). Anticipating milk yeild using artificial Neural Network. International Journal of Applied Science and Engineering Research, 3: 690–695.
Streefland, G., Herrema, F. & Martini, M. (2023). A Gradient Boosting model to predict the milk production. Smart Agricultural Technology, 6: 100302.
Tanty, R. & Desmukh, T.S. (2015). Application of Artificial Neural Network in Hydrology-A Review. International Journal of Engineering Research, 4: 184–188.
White, B.W. & Rosenblatt, F. (1963). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. American Journal of Psychology, 76: 705.