مقایسه عملکرد معادلات قطعی در پیش بینی صحت ارزیابی ژنومی در ساختارهای مختلف ژنتیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استاد، گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشیار گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری،

چکیده

سابقه و هدف: شناسایی نشانگرهای تک نوکلئوتیدی و روش های مختلف ارزیابی ژنومی در قالب انتخاب به کمک نشانگر در سطح ژنوم منجر به پیشرفت ژنتیکی چشمگیری در صفات اقتصادی حیوانات اهلی شده است. موفقیت پیش بینی ژنومی بر اساس صحت آن ارزیابی می شود. معادله های قطعی، ارتباط بین صحت پیش بینی و عوامل موثر روی صحت پیش بینی را مشخص می سازند و بنابراین قبل از انجام انتخاب ژنومی، امکان طراحی برنامه بهینه مانند اندازه مناسب جمعیت مرجع برای دستیابی به سطح مطلوب صحت انتخاب را فراهم می نمایند. هدف از مطالعه حاضر ارزیابی پیش بینی صحت معادله های قطعی و مقایسه آن با صحت پیش بینی ارزش های اصلاحی ژنومی در مطالعه شبیه سازی شده بود.
مواد و روش ها: از چهار مدل قطعی شامل معادله دتوایلر و همکاران، معادله گودارد، معادله گودارد و همکاران و معادله رابییر و همکاران برای پیش بینی صحت ارزیابی ژنومی در ساختارهای ژنتیکی مختلف شامل طیف مختلف وراثت پذیری، اندازه جمعیت مرجع و تعداد قطعات مستقل کروموزومی استفاده شد. برای مقایسه و ترسیم پیش بینی صحت برآورد ارزش اصلاحی ژنومی از برنامهShinyGPAS استفاده شد. به منظور مقایسه عملکرد معادلات قطعی با صحت پیش بینی در جمعیت شبیه سازی شده، شبیه سازی جمعیتی با استفاده از نرم افزار QMSIM صورت گرفت. بدین منظور در شبیه سازی ژنوم، سه سطح وراثت پذیری 1/0، 3/0 و 5/0 و دو سطح اندازه جمعیت مرجع 1000 و 2000 فردی در نظر گرفته شد و برآورد ارزش های اصلاحی ژنومی با استفاده از روش بیز A و بیز B در بسته نرم افزاری BGLR در محیط R انجام شد
یافته ها: در وراثت پذیری های پایین بیشترین مقدار پیش بینی صحت در معادله گودارد مشاهده شد که نزدیک ترین پیش بینی صحت (56/0) را با صحت ارزیابی ژنومی داده شبیه سازی شده به روش بیز A (56/0) داشت. با وراثت پذیری متوسط (3/0) معادله گودارد (74/0) و رابییر و همکاران (73/0) بیشترین نزدیکی و تطابق را به صحت ارزیابی داده های شبیه سازی شده داشتند. با افزایش اندازه جمعیت از 1000 به 2000 فرد همراه با افزایش وراثت پذیری، عملکرد معادله های قطعی به صحت برآورد شده توسط روش های بیز نزدیک شد و بیشترین انطباق در روش گودارد و رابییر دیده شد. در قطعات مستقل کروموزومی پایین بیشترین صحت ارزش اصلاحی به دست آمده مربوط به معادله رابیر و همکاران با مقدار 860/0 مشاهده شد با افزایش قطعات مستقل کروموزومی، بیشترین مقدار صحت ارزش اصلاحی به دست آمده مربوط به معادله پیش بینی کننده گودارد بود.
نتیجه گیری: نتایج تحقیق نشان داد معادله های قطعی از توانایی مناسبی برای پیش بینی صحت ارزیابی ژنومی برخوردار هستند و عملکرد آن ها با تغییر ساختار ژنتیکی متفاوت است. نتایج پیشنهاد می کنند که به طور کلی پیش بینی صحت ارزیابی ژنومی با استفاده از معادله های گودارد و رابیر انطباق بیشتری با صحت ارزیابی ژنومی در داده های شبیه سازی شده برخوردار هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the performance of deterministic formulas in predicting the accuracy of genomic evaluation in different genetic architectures

نویسندگان [English]

  • Bahare Akbari 1
  • Hasan Hafezian 2
  • Mohsen Gholizadeh 3
1 Sari Agricultural Sciences and Natural Resources University
2 Sari Agricultural Sciences and Natural Resources University
3 Associate Professor, Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

Back ground and objectives: Identification of single nucleotide markers and different methods of genomic evaluation in the form of marker assisted selection at the genome level has led to considerable genetic progress in the economic traits of domestic animals. The success of genomic prediction is measured by its accuracy. Deterministic formulas determine the relationship between prediction accuracy and factors affecting prediction accuracy and therefore before running into genomic selection, it is possible to design an optimal program such as the appropriate size of the reference population to achieve the optimum level of selection accuracy. The aim of the present study was to evaluate the prediction of the accuracy of deterministic formulas and compare it with the accuracy of prediction of genomic breeding values in the simulated study.
Materials and methods: Four deterministic formulas including Daetwyler et al formula, Goddard formula, Goddard et al formula and Rabier et al formula were used to predict the accuracy of genomic evaluation in different genetic architectures including different levels for heritability, reference population size and number of independent chromosome segments. The ShinyGPAS program was used to compare and plot the accuracy of prediction. In order to compare the performance of deterministic formulas with the accuracy of predictions in the simulated population, population simulations were performed using QMSIM software. For this purpose, in genome simulation, three levels of heritability of 0.1, 0.3 and 0.5 and two levels of reference population size of 1000 and 2000 individuals were considered and estimation of genomic breeding values was performed using Bayesian method A and Bayesian B using BGLR package in R medium
Results: In low heritability, the highest prediction accuracy was observed in Goddard formula, which had the closest prediction accuracy (0.56) to the accuracy of genomic evaluation of simulated data estimated by Bayes A method (0.56). With moderate heritability (0.3), Goddard (0.74) and Rabier et al. (0.73) had the closest and most similarity to the accuracy of the simulated data. With population size increased from 1000 to 2000 individuals along with increasing heritability, the performance of deterministic formulas was closer to the accuracy estimated from simulation data by Bayesian methods and the most agreement was obtained in Goddard and Rabier methods. In the lower independent chromosome segments, the highest accuracy obtained by Rabier et al (0.860). With increasing chromosomal independent segments, the highest value of accuracy obtained by Goddard predictive formula.
Conclusion: The results showed that deterministic formulas have a good ability to predict the accuracy of genomic evaluation and their performance is linked to the genetic architecture. The results suggest that the predictions of accuracy, in general, using Goddard and Rabier formulas are more consistent with genomic estimation accuracy in the simulated data.

کلیدواژه‌ها [English]

  • Genomic evaluation
  • Accuracy
  • Deterministic formulas
  • Simulation
Brard, S. and Ricard, A. 2015. Is the use of formulae a reliable way to predict the accuracy of genomic selection. Journal of Animal Breeding and Genetics, 132(3): 207–217.
Combs, E. and Bernardo, R. 2013. Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. The Plant Genome, 6(1): 11.0030.
Daetwyler, H.D., Pong-Wong, R., Villanueva, B. and Woolliams, J.A. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185(3): 1021–1031.
Daetwyler, H.D., Villanuev, B. and Woolliams, J.A. 2008. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLOS ONE, 3(10): e3395.
de los Campos, G., Hickey, J.M. Pong-Wong, R., Daetwyler, H.D. and Calus, M.P.L. 2013. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193(2): 327–345.
Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 136(2): 245–257.
Goddard, M. E. 2017. Can we make genomic selection 100% accurate. Journal of Animal Breeding and Genetics, 134: 287–288.
Goddard, M.E., Hayes, B.J. and Meuwissen, T.H.E. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection. Journal of Animal Breeding and Genetics, 128(6): 409–421.    
Hayes, B.J., Daetwyler, H.D., Bowman, P., Moser, G., Tier, B., Crump, R., Khatkar, M., Raadsma, H.W. and Goddard, M.E. 2009. Accuracy of genomic selection: comparing theory and results. Proccing of Association for Advancment of Animal Breeding and Genetics, 18(18): 34–37.
Hayes, B.J., Bowman, P.J., Chamberlain, A.C., Verbyla, K. and Goddard, M.E. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1): 1–9.
Henderson, C.R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 423–447.
Marjanovic, J. and Calus, M.P.L. 2021. Factors affecting accuracy of estimated effective number of chromosome segments for numerically small breeds. Journal of Animal Breeding and Genetics, 138(2): 151–160.
Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4): 1819–1829.
Morota, G. 2017. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas. Genetics Selection Evolution, 49(1): 91.
Pérez, P. and de Los Campos, G. 2014. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2): 483–495.
Rabier, C.E., Barre, P., Asp, T. and Charmet G. Mangin B. 2016. On the accuracy of genomic selection. PloS One, 11(6): e0156086.
Sargolzaei, M. and Schenkel, F.S. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5): 680–681.
Silva, G.G.Z., Dutilh, B.E., Matthews, T.D., Elkins, K., Schmieder, R., Dinsdale, E.A. and Edwards, R. A. 2013. Combining de novo and reference-guided assembly with scaffold_builder. Source Code for Biology and Medicine, 8(1): 1–5.
Solberg, T.R., Sonesson, A.K., Woolliams, J.A. and Meuwissen, T.H.E. 2008. Genomic selection using different marker types and densities. Journal of Animal Science, 86(10): 2447–2454.
Toosi, A. Fernando, R.L. and Dekkers, J.C.M. 2010. Genomic selection in admixed and crossbred populations. Journal of Animal Science, 88(1): 32–46.
van den Berg, I., Meuwissen, T.H E., MacLeod, I.M. and Goddard, M.E. 2019. Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction. Journal of Dairy Science, 102(4): 3155–3174.
VanRaden, P.M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11): 4414–4423.
VanRaden, P.M. and Sullivan, P.G. 2010. International genomic evaluation methods for dairy cattle. Genetics Selection Evolution, 42(1): 1-7.
Weber, K.L., Thallman, R.M., Keele, J.W. Snelling, W.M., Bennett, G.L., Smith, T.P.L., McDaneld, T.G., Allan, M.F., Van Eenennaam, A.L. and Kuehn, L.A. 2012. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes. Journal of Animal Science, 90(12): 4177–4190.