فراتحلیل ارتباط چندشکلی ژن‌های DGAT1 و لپتین با برخی صفات کمی و کیفی تولید شیر در گاوهای شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد ، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

2 استادیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

3 استادیار ، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

چکیده

چکیده
سابقه و هدف: فراتحلیل (متاآنالیز) روشی آماری برای یکی کردن نتایج حاصل از تحقیقات مستقل با فرضیه های مشابه است که در تحقیقات دامی می تواند منجر به افزایش توان تجزیه آماری و نیز بالا بردن تکرارپذیری نتایج، نسبت به تحقیقات انفرادی شود. چندشکلی ژن های بزرگ اثر دی آسیل گلیسرول آسیل ترانسفراز 1 (DGAT1) و لپتین در طی سال های اخیر به خاطر اثرات احتمالی آن ها روی صفات مهم اقتصادی در تحقیقات مختلف، توسط محققین علوم دامی مورد توجه قرار گرفته است. با این وجود، ارتباط بین این ژن ها و صفات مرتبط با تولید شیر در نژادهای مختلف گاو شیری متناقض، یعنی گاهی معنی دار و گاهی نیز بدون ارتباط معنی دار گزارش شده است. هدف از پژوهش حاضر، بررسی اثرات کلی ژن های DGAT1 و لپتین روی برخی از صفات مهم اقتصادی شامل میزان تولید شیر، مقدار و درصد چربی و پروتئین شیر در گاوهای شیری به روش فراتحلیل بود.
مواد و روش ها: در این پژوهش، از مطالعات منتشر شده در مجلات و پایان نامه های معتبر تا سال 2018 استفاده شد. پس از انجام مراحل مختلف کنترل کیفیت، به ترتیب از 9 و 4 تحقیق گزارش شده برای جایگاه های K232A و Sau3AI مربوط به ژن های DGAT1 و لپتین، استفاده شد. این بررسی با استفاده از نرم افزار Stata v. 15انجام شد. شاخص عدم تجانس (I2) برای همه پارامترها معنی دار بود، بنابراین از مدل اثرات تصادفی استفاده شد. داده ها برای هر متغیر با استفاده از این مدل ها، برای تخمین اندازة اثر، دامنه اطمینان 95 درصد و سطح معنی داری آماری، آنالیز شدند. تمام متغیرها در این مطالعه به صورت داده های پیوسته بودند. اندازة اثر برای داده‌های پیوسته، تفاوت میانگین استانداردشده بود که برای چندشکلی K232A ژن DGAT1 و چندشکلی Sau3AI ژن لپتین، روی مقدار و درصد چربی و پروتئین، و مقدار تولید شیر محاسبه شد.
یافته ها: نتایج این تحقیق نشان داد که چندشکلی جایگاه ژنی K232A در ژن DGAT1 اثر معنی داری روی درصد و مقدار چربی شیر داشته و می تواند نقش مهمی در افزایش مقدار آن ها ایفا کند، اما ارتباط آن با درصد و مقدار پروتئین و همچنین میزان تولید شیر معنی دار نیست. همچنین نتایج بررسی چندشکلی جایگاه ژنی Sau3AI ژن لپتین نشان داد که این جایگاه با هیچ یک از صفات مورد بررسی ارتباط معنی داری ندارد.
نتیجه گیری: در مجموع، نتایج حاصل از این تحقیق با شناسایی اثرات کلی ژنوتیپ‌های مورد مطالعه ژن های DGAT1 و لپتین روی صفات مرتبط با تولید شیر در گاوهای شیری، می تواند نقش مهمی در برنامه ریزی تحقیقات بعدی در این زمینه داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A meta-analysis for association between DGAT1 and Leptin genes polymorphisms with some milk production traits in dairy cows

نویسندگان [English]

  • Marjan Ghorbani 1
  • Mohammad Hossein Moradi 2
  • AmirHossein Farahani 3
  • Mehdi Mirzaei 3
1 Department of Animal Science, Arak University, Arak, Iran
2 Department of Animal Science, Arak University, Arak, Iran
3 Department of Animal Science, Arak University, Arak, Iran
چکیده [English]

Abstract
Background and objectives: Meta-analysis is a statistical approach for combining the results from independent studies with the same assumptions, that is able to increase the statistical analysis power and the repeatability of the results in the livestock researches, comparing to single-study analysis. The polymorphism in the major genes of Diacylglycerol O-Acyltransferase 1 (DGAT1) and Leptin have drawn much attention from animal scientists during recent years, for their possible roles in the economically important traits. However, the relationships between these genes and milk production traits have been incompatible in dairy cows, it means sometimes significant and some other times no significant association has been reported. The purpose of this study was to investigate the overall effect of DGAT1 and Leptin genes on some economically important traits including milk yield, fat and protein content and percentages in dairy cows by using meta-analysis.
Materials and methods: in this study, all researches published in the validated journals and thesis up to 2018 were used. Following to quality control, 9 and 4 studies reported for K232A and Sau3AI polymorphisms of DGAT1 and Leptin genes were used, respectively. The analysis was carried out using the Stata v. 15. Non conformance index (I 2) was significant for all parameters, so that a random risk model was used. Data were analyzed for each variable using these models for measuring the effect size, 95% confidence interval and statistical significance level of the measurements. All variables were continuously in this study. The measurement of the effect size for continuous data was carried out using the standardized mean difference (SMD) that calculated for the polymorphisms of K232A and Sau3AI loci in DGAT1 and Leptin genes on the milk yield, fat and protein content and percentage.
Results: the results of this study showed that the polymorphism in the K223A locus of DGAT1 gene, has a significant effect on lipid content and percentage, and can play an important role in increasing of their amounts, but its relationship with milk yield and protein content and percentage is not significant. Also, the results for Sau3AI polymorphism in the Leptin revealed that this locus had no significant effect on the traits investigated in this study.
Conclusion: Overall, the results of this study with identifying the overall effects of the studied genotypes of DGAT1 and Leptin genes on milk production traits in dairy cows can play an important role for planning next researches in this field.

کلیدواژه‌ها [English]

  • Polymorphism
  • Leptin
  • Diacylglycerol O-Acyltransferase 1 (DGAT1)
  • Dairy cattle
  1. Al-Janabi, H.R.A., Al-Rawi, A.J. and Al-Anbari, N.N. 2018. Association of leptin receptor gene polymorphism with some productive and reproductive traits in Holstein primiparous cows. Journal of Entomology and Zoology Studies. 6(2): 1359-1363.
  2. Anton, I., Kovacs, K., Holló, G., Farkas, V., Lehel, L., Hajda, Z. and Zsolnai, A. 2011. Effect of leptin, DGAT1 and TG gene polymorphisms on the intramuscular fat of Angus cattle in Hungary. Journal of Livestock Science. 135(2): 300–303.
  3. Banos, G., Woolliams, J.A., Woodward, B.W., Forbes, A.B. and Coffey, M.P. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. Journal of Dairy Science. 91(8): 3190–3200.
  4. Berry, D.P., Howard, D., O’Boyle, P., Waters, S., Kearney, J.F. and McCabe, M. 2010. Associations between the K232A polymorphism in the diacylglycerol-O-transferase 1 (DGAT1) gene and performance in Irish Holstein-Friesian dairy cattle. Irish Journal of Agricultural and Food Research. 49(1): 1–9.
  5. Cheung, M.V.L. and Vijayakumar, R. 2016. A guide to conducting a meta-analysis. Neuropsychology Review. 26(2): 121–128.
  6. Dokso, A., Ivanković, A. and Zečević, E. 2015. Effect of DGAT1 gene variants on milk quantity and quality in Holstein, Simmental and Brown Swiss cattle breeds in Croatia. Mljekarstvo. 65(4): 238
  7. Doyle, J.L., Berry, D.P., Veerkamp, R.F., Carthy, T.R., Walsh, S.W., Evans, R.D. and Purfield, D.C. 2020. Genomic regions associated with skeletal type traits in beef and dairy cattle are common to regions associated with carcass traits, feed intake and calving difficulty. Frontiers in Genetics. 11: 20.
  8. Durmaz, A.A., Karaca, E., Demkow, U., Toruner, G., Schoumans, J. and Cogulu1, O. 2014. Evolution of genetic techniques: past, present, and beyond. Journal of BioMed Research International. 7: 1-8.
  9. Ghoneim, M.A., Ogaly, H.A., Gouda, E.M. and El-Behairy, A.M. Prediction of desirable genotype patterns in Baladi beef cattle and water buffalo by identification of new leptin gene SNPs. Journal of Livestock Science. 194: 51–56.
  10. Hedges, L. and Olkin, I. 1980. Vote-counting methods in research synthesis. Psychol Bull. 88(2): 359-69.
  11. Hong, F., Breitling, R., McEntee, C.W., Wittner, B.S., Nemhauser, J.L. and Chory, J. 2006. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 22(22): 2825-2827.
  12. Hradecka, E., Citek, J., Panicke, L., Rehout, V. and Hanusova, L. 2008. The relation of GH1, GHR and DGAT1 polymorphisms with estimated breeding values for milk production traits of German Holstein sires. Czech Journal of Animal Science. 53(6): 238–245.
  13. Javanmard, , Khaledi, K., Asadzadeh, N. and Solimanifarjam, A.R. 2010. Detection of polymorphisms in the bovine leptin (Lep) gene: Association of single nucleotide polymorphism with breeding value of milk traits in Iranian Holstein Cattle. Journal of Molecular Genetics. 2(1): 10-14.
  14. Javanmard, A., Moradi, M.H. and Safdari, M. 2014. Analysis of association among four candidate genes polymorphisms with milk yield and reproductive performance traits in Sarabi cow using PCR-RFLP marker. Journal of Agricultural Biotechnology. 6(1): 47-60.
  15. Ji, S., Willis, G.M., Scott, R.R. and Spurlock, M.E. 1998. Partial cloning and expression of the bovine leptin gene. Animal Biotechnology Journal. 9: 1-14.
  16. Kadlecova, V., Němečková, D., Ječmínková, K. and Stádník, L. 2014. Association of bovine DGAT1 and leptin genes polymorphism with milk production traits and energy balance indicators in primiparous Holstein cows. Mljekarstvo. 64(1): 19-26.
  17. Kiyici, J.M., Arslan, K., Akyuz, B., Kaliber, M., Aksel, E.G. and Cinar, M.U. 2018. Relationships between polymorphisms of growth hormone, leptin and myogenic factor 5 genes with some milk yield traits in Holstein dairy cows. Journal of Dairy Technology. 72(1): 1-7.
  18. Kharrati Koopaei, , Mohammad Abadi, M.R., Ansari Mahyari, S., Esmailizadeh Koshkoiyeh, A., Tarang, A.R. and Potki, P. 2012. Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Animal Science Papers and Reports. 30(3): 231-239.
  19. Kuehn, C., Edel, C., Weikard, R. and Thaller, G. 2007. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows. Journal of BMC Genetics. 8(1): 62.
  20. Kumar, A., Singh, R.V., Chauhan, A., Ilayakumar, K., Kumar, S., Kumar, A., Sonwane, A., Kumar, S., Panigrahi, M. and Bhushan, B. 2019. Genetic association analysis reveals significant effect of β-casein A1/A2 loci on production and reproduction traits in Frieswal crossbred cows. Journal of Biological Rhythm Research. 51(4): 1-14.
  21. Lean, I.J., Rabiee, A.R., Duffield, T.F. and Dohoo, I.R. 2009. Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. Journal of Dairy Science. 92(8): 3545–3565.
  22. Liefers, S.C., Pas, M.F.W., Veerkamp, R.F. and van der Lende, T. 2002. Associations between leptin gene polymorphisms and production, live weight, energy balance, feed intake, and fertility in Holstein heifers. Journal of Dairy Science. 85(6): 1633-1638.
  23. Luo, J., Qin, F., Deng, Ch., Li, F., Li, W. and Yue, X. 2019. Polymorphisms of IGF-IR gene and their association with economic traits in two indigenous Chinese dairy goat breeds. Journal of Gene. 695: 51-56.
  24. Manga, I. and Riha, H. 2011. The DGAT1 gene K232A mutation is associated with milk fat content, milk yield and milk somatic cell count in cattle. Archiv Tierzucht. 54(3): 257-263.
  25. Mao, Y.J., Chen, R.J., Chang, L.L., Chen, Y., Ji, D.J., Wu, X.X., Shi, X.K., Wu, H.T., Zhang, M.R., Yang, Z.P., König, S. and Yang, L.G. 2012. Effects of SCD1- and DGAT1-genes on production traits of Chinese Holstein cows located in the delta region of Yangtze river. Livestock Science. 145: 280–286.
  26. Miller, D.W., Findlay, P.A., Morrison, M.A., Raver, N. and Adam, C.L. 2002. Seasonal and dose-depedent effects of intracerebroventricular leptin on LH secretion and appetite in sheep. Journal of Endocrinology. 175(2): 395-404.
  27. Minozzi, G., Williams, J.L., Stella, A., Strozzi, F., Luini, M., Settles, M.L., Taylor, J.F., Whitlock, R.H., Zanella, R. and Neibergs, H.L. 2012 Meta-analysis of two genome-wide association studies of bovine paratuberculosis. PLoS ONE. 7(3): e32578. 
  28. Mohammed, S.A., Rahamtalla, S.A., Ahmed, S.S., Elhafiz, A., Dousa, B.M., Elamin, Kh.M. and Ahmed, M.K.A. DGAT1 gene in dairy cattle. Global Journal of Animal Scientific Research. 3(1):191-198.
  29. Molee, A., Duanghaklang, N. and Na-Lampang, P. 2012. Effects of Acyl-CoA: diacylglycerol acyl transferase 1 (DGAT1) gene on milk production traits in crossbred Holstein dairy cattle. Tropical Animal Health and Production. 44(4): 751-755.
  30. Molee, A., Poompramun, C. and Mernkrathoke, P. 2015. Effect of casein genes-beta-LGB, DGAT1, GH, and LHR-on milk production and milk composition traits in crossbred Holsteins. Genetics and Molecular Research. 14(1): 2561-2571.
  31. Naserkheil, M., Miraie-Ashtiani, S.R., Sadeghi, M., Nejati-Javaremi, A. and Lee, D. 2016. Investigation of polymorphism of DGAT1 gene in Iranian buffaloes. Iranian Journal of Animal Science. 47(2): 175-183. (In Farsi)
  32. Ngu, N.T., Quynh, L.T.B., Hon, N.V., Nhan, N.T.H., Khoa, D.V.A., Hung, L.T. and Xuan, N.H. 2015. Influence of leptin genotypes on milk fat and protein content of crossbred holstein friesian x Lai Sind cows. Journal of Animal and Plant Sciences. 25(1): 304-308.
  33. Nobari, K., Ghazanfari, S., Nassiry, M,R., Tahmoorespur, M. and Jorjani, E. 2010. Relationship between Leptin gene polymorphism with economical traits in Iranian Sistani and Brown Swiss cows. Journal of Animal and Veterinary Advances. 9(22): 2807-2810.
  34. Orangi, S. 2014. Association of polymorphism in diacylglycerol acyltransferase 1 (DGAT1) and leptin genes with productive and reproductive traits in Holstein cows. Msc. Thesis. Animal Science of Shiraz University, Iran. (In Persian)
  35. Ozdemir, M., Kopuzlu, S., Topal, M., and Bilgin, O.C. 2018. Relationships between milk protein polymorphisms and production traits in cattle: a systematic review and meta-analysis. Archives Animal Breeding. 61(2): 197–206
  36. Pannier, L., Sweeney, T., Hamill, R.M., Ipek, F., Stapleton, P.C. and Mullen, A. M. 2009. Lack of an association between single nucleotide polymorphisms in the bovine leptin gene and intramuscular fat in Bos taurus cattle. Meat Science. 81(4): 731–737.
  37. Rabiee, A.R., Breinhild, K., Scott, W., Golder, H.M., Block, E. and Lean, I.J. 2012. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. Journal of Dairy Science. 95(6): 3225–3247.
  38. Ramasamy, A., Mondry, A., Holmes, C. C. and Altman, D.G. 2008. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Medicine. 5: e184.
  39. Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh, D. and Chinnaiyan, A.M. 2002. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Research. 62(15): 4427-33.
  40. Rychtarova, J., Sztankóová, Z., Kyselová, J., Zink, V., Štípková, M., Vacek, M. and Štolc L. 2014. Effect of DGAT1, BTN1A1, OLR1, and STAT1 genes on milk production and reproduction traits in the Czech Fleckvieh breed. Czech Journal of Animal Science. 59(2): 45-53
  41. Sharifi, S., Pakdel, A. and Ebrahimi, E. 2017. Meta-analysis of transcriptomic data of mammary gland infected by Escherichia coli Bacteria in dairy cows. Iranian Journal of Animal Science. 48(3): 343-352. (In Farsi).
  42. 2019. Stata Meta-Analysis Reference Manual. 1ST Edition. Stata Press Publication. StataCorp LLC, 274p.
  43. Stone, R.T., Kappes, S.M. and Beattie, C.W. 1996. The bovine, homologue of the obese gene maps to chromosome 4. Mammalian Genetics. 7(5): 399-400.
  44. Sun, D., Jia, J., Ma, Y., Zhang, Y., Wang, Y., Yu, Y. and Zhang, Y. 2009. Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population. Animal Genetics. 40(6): 997-1000.
  45. Thaller, G., Kramer, W., Winter, A., Kaupe, B., Erhardt, G. and Fries, R. 2003. Effects of DGATl variants on milk production traits in German cattle breeds. Journal of Animal Sciences. 81(8): 1911-1918.
  46. Tomka, J., Vašíčková, K., Oravcová, M., Bauer, M., Huba, J., Vašíček, D. and Peškovičová, D. 2016. Effects of polymorphisms in DGAT1 and LEP genes on milk traits in Holstein primiparous cows. Mljekarstvo. 66(2): 122-128.
  47. Trombley, S., Maugars, G., Kling, P., Björnsson, B.T. and Schmitz, M. 2012. Effects of long-term restricted feeding on plasma leptin, hepatic leptin expression and leptin receptor expression in juvenile Atlantic salmon (Salmo salar L.). General and Comparative Endocrinology. 175(1): 92-99.
  48. Winter, A., Kramer, W., Werner, F., Kollers, S., Kata, S., Durstewitz, G., Buitkamp, J., Womack, J.E., Thaller, G. and Fries, R. 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol 46 acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences. 99(14): 9300-9305.

 

  1. Xia, J., Fjell, C.D., Mayer, M.L., Pena, O.M., Wishart, D.S. and Hancock, R.E.W. 2013. INMEX-a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Researches. 41: 63-70.
  2. Yin, L., Coelho, S.G., Valencia, J.C., Ebsen, D., Mahns, A., Smuda, C., Miller, S.A., Beer, J.Z., Kolbe, L. and Hearing, V.J. 2015. Identification of genes expressed in hyperpigmented skin using meta-analysis of microarray data sets. Journal of Investigative Dermatology. 135(10): 2455-63.
  3. Yin, T. and König, S. 2019. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genetics Selection Evolution. 51(1): 4.