شناسایی مسیرهای سیگنال‌دهی مؤثر در تولید شیر گاو با استفاده از داده‌های ریزRNA

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

2 دانشیار ، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

3 استادیار ، گروه علوم دامی، دانشکده کشاورزی، دانشگاه جیرفت

چکیده

سابقه و هدف: اطلاعات حاصل از RNAها به علت اینکه حلقه ارتباط دهنده ژنوتیپ و فنوتیپ هستند، کمک شایانی در فهم و درک جنبه‌های زیست‌شناختی مرتبط با مسیرهای فیزیولوژیکی می‌کنند. ریزRNAها، مولکول‌های 22 نوکلئوتیدی و تک رشته‌ای هستند که می-توانند به صورت اختصاصی بر عملکرد و بیان ژن‌ها تأثیر بگذارند. از این رو پژوهش‌های فراوانی در مورد نقش این مولکول‌ها در فرآیندهای زیستی مختلف مانند تولید شیر انجام شده است. صفت تولید شیر یکی از مهمترین صفات در صنعت دامپروری است. این صفت در حیوانات مزرعه به صورت چند‌ژنی می‌باشد و هر ژن ممکن است در مسیرهای زیستی مختلف دخیل باشد و در مقابل هر مسیر زیستی نیز می‌تواند شامل تعداد زیادی ژن شود. این روابط شبکه پیچیده‌ای را تشکیل می‌دهند که نشان دهنده ارتباط تعداد زیادی ژن با تعداد زیادی مسیر زیستی است. مولکول‌های سیگنالی که می‌توانند به عنوان مورفوژن عمل نمایند، الگوی شبکه ژنی ساختمان بافت را در تمام طول عمر از مرحله رویان در حال رشد تا ارگانیزم بالغ کنترل می‌نمایند. مورفوژن‌ها بستگی به میزان ترشح و فاصله منبع ترشح، می‌توانند واکنش‌های مختلف سلولی را ایجاد نمایند. از این رو هدف پژوهش حاضر بررسی مستندسازی عملکردی ژن‌های هدف ریزRNAهای با بیان متفاوت جهت شناسایی تعدادی از مسیرهای زیستی دخیل در فرآیند تولید شیر است.
مواد و روش‌ها: به منظور شناسایی و بررسی مسیرهای زیستی دخیل در تولید شیر از داده‌های توالی‌یابی شده ریزRNA استفاده شد که از پایگاه داده ArrayExpress با شماره دسترسی E-GEOD-61227 استخراج شدند. در مطالعه حاضر همه مراحل استانداردسازی داده‌ها، تفاوت بیان ریزRNAها و تعیین معنی‌داری توسط نرم‌افزار GEO2R انجام شد. معیارهای انتخاب ریزRNAها در این مطالعه شامل p value تصحیح شده کمتر از 05/0 و (1>Log fc>1-) بودند. در مرحله بعد بررسی‌های بیوانفورماتیکی جهت یافتن ژن هدف هر ریزRNA انجام شد. بدین منظور ریزRNAهای با بیان متفاوت حاصل از تجزیه و تحلیل در مرحله قبل، جهت پیدا کردن ژن‌های هدف به نرم‌افزار Target Scan معرفی شدند. پس از شناسایی و مشخص شدن ژن‌های هدف ریزRNA جهت بررسی اطلاعات زیستی و آنالیز عملکردی از سرور DAVID استفاده شد.
یافته‌ها: نتایج این پژوهش نشان داد که 23 ریزRNA با بیان متفاوت وجود دارد که ژن‌های زیادی را تحت تأثیر قرار می‌دهند و این ژن‌ها در مسیرهای سیگنال‌دهی TGF-β، WNT، MAPK، mTOR، PI3k-Akt، انسولین، استروژن و پرولاکتین نقش دارند که بیشتر این مسیرهای سیگنال‌دهی در رشد و تکثیر سلولی، فعالیت سلول‌های اپیتلیال و در نتیجه توسعه غدد پستان تاثیرگذار هستند. از آنجایی که این مسیرهای شناسایی شده با تولید شیر ارتباط دارند می‌توان از ژن‌های شناسایی شده در این مسیرهای سیگنال‌دهی در بهبود صفت تولید شیر استفاده کرد.
نتیجه‌گیری: ژن‌های MAPK1، MAPK8، FASLG و PTEN در اکثر مسیرهای زیستی فعال و با ژن‌های مختلفی در ارتباط هستند، بر این اساس این ژن‌ها جزء ژن‌های عمده اثر در فرآیند تولید شیر به شمار می‌روند.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of effective signaling pathways in cow's milk production using micro-RNA data

نویسندگان [English]

  • Saeideh Eskandarynasab 1
  • Mohammad Reza Bahreini Behzadi 2
  • Zahra Roudbari 3
1 M.Sc. Student, Animal Science Department, Yasouj University
2 Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
3 Assistant Professor, Animal Science Department, University of Jiroft
چکیده [English]

Background and objectives: Information from RNAs, because they are the link between genotype and phenotype, helps to understand the biological aspects of physiological pathways. MicroRNAs are molecules with 22 nucleotides in length and single strand which can specifically affect the function and expression of genes, hence many studies have been done on the role of these molecules in various biological processes, such as milk production. The milk production trait is one of the most important traits in the dairy cattle industry. This trait is a polygenic trait in farm animals and controlled by a large number of genes and each gene may be involved in various biological pathways and mutually any biological pathway can include a large number of genes. These relationships form the complex network which indicates the association of a large number of biological pathways with lots of genes. Signal molecules that can act as morphogens control the pattern of the gene network of tissue structure throughout the lifespan of the growing embryo stage to the adult organism. The morphogens depend on the amount of secretion and the destination of secretion source can produce different cellular responses. Therefore, the aim of the present study was to investigate target genes of differentially expressed microRNAs in bovine mammary tissue to identify a number of biological pathways involved in the milk production process.
Materials and methods: In order to identify and investigate the biological pathways involved in milk production, microRNA sequenced data were used which were extracted from ArrayExpress database with E-GEOD-61227 access number. In present study, all stages of standardization of data, differences between expression of microRNA and significance determination were performed by GEO2R software. The criteria for the selection of microRNA in this study were corrected P-value Results: The results of this study showed that there are 23 microRNAs with different expressions that affect many genes. These genes are involved in the signaling pathways of TGF-β, WNT, MAPK, mTOR, PI3k-Akt, insulin, estrogen and prolactin. Most of these signaling pathways are involved in cell growth and proliferation, mammary gland development, and epithelial cell activity. Since these identified pathways are associated with milk production, the genes identified in these signaling pathways can be used to improve milk production trait.
Conclusion: MAPK1, MAPK8, FASLG and PTEN genes are activate in most biological pathways and they are associated with various genes, accordingly these genes are the major genes in the process of milk production.

کلیدواژه‌ها [English]

  • Bioinformatics
  • Biological pathway
  • Mammary gland
  • Target gene
  1. Alipanah, M., Roudbari, Z., Javadmenesh, A., Sataei Mokhtari, M., Seydabadi, H.R. and Gharari, F. 2017. Identification of biological pathways involved in body growth of cattle using gene expression profiles. Animal Science Journal (Pajouhesh and Sazandegi). 31(119): 59-70. (In Persian).
  2. Amini Shal, S.H., Yazdani, A.R., Chizari, A.H., Alaei Borujeni, P. and Rafiei, H. 2013. Investigate the effect of management factors on production and profitability of industrial dairy cattle breeding farms: the case study of southern Tehran province. Iranian Journal of Agricultural Economics and Development Research. 44(1): 67-76. (In Persian).
  3. Bao, Z., Lin, J., Ye, L., Zhang, Q., Chen, J., Yang, Q. and Yu, Q. 2016. Modulation of mammary gland development and milk production by growth hormone expression in GH transgenic goats. Frontiers in Physiology. 7: 74-79.
  4. Booth, A.K. and Gutierrez-Hartmann, A. 2015. Signaling pathways regulating pituitary lactotrope homeostasis and tumorigenesis. In Recent Advances in prolactin Research. Springer, Cham. 37-59.
  5. Dejmek, J., Dib, K., Jonsson, M. and Andersson, T. 2003. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. International Journal of Cancer. 103(3): 344-351.
  6. Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C. and Lempicki, R.A. 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome Biology. 4(9): 1-11.
  7. Farhangfar, H. and Behdani, E. 2018. Identification of the major miRNAs, target genes and signaling pathways associated with milk production using miRNA-Seq. Journal of Ruminant Research. 5(4): 73-86. (In Persian).
  8. Farlow, D.W., Xu, X. and Veenstra, T.D. 2009. Quantitative measurement of endogenous estrogen metabolites, risk-factors for development of breast cancer, in commercial milk products by LC-MS/MS. Journal of Chromatography B. 877(13): 1327-1334.
  9. Fata, J.E., Kong, Y.Y., li, J., Sasaki, T., Irie-Saski, J., Moorehead, R.A., Elliott, R., Scully, S., Voura, E.B. and Lacey, D.L. 2000. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 103(1): 41-50.
  10. Ghasemi, N., Zadehrahmani, M., Rahimi, GH. and Hafezian, S.H. 2009. Association between prolactin gene polymorphism and milk production in montebeliard cows. International Journal of Genetics and Molecular Biology. 1(3): 048-051.
  11. Ghorbani, Sh., Tahmoorespur, M., Masoudi-nejad, A., Nasiri, M.R., Asgari, Y. and Motamedian, E. 2016. Reconstruction and topology analysis of metabolism network involved in Bos Taurus milk production. Animal Science Journal (Pajouhesh and Sazandegi). 29(110): 167-180. (In Persian).
  12. Huang, T.H., Fan, B., Rothschild, M.F., Hu, Z.L., Li, K. and Zhao, S.H. 2007. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC bioinformatics. 8(1): 341-350.
  13. Jiang, N., Wang, Y., Yu, Z., Hu, L., Liu, C., Gao, X. and Zheng, S. 2015. WISP3 (CCN6) regulates milk protein synthesis and cell growth through mTOR signaling in dairy cow mammary epithelial cells. DNA and Cell Biology. 34(8): 524-533.
  14. Karjalainen, J., Martin, J.M., Knip, M., Ilonen, J., Robinson, B.H., Savilahti, E., Akerblom H.K. and Dosch, H.M. 1992. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. New England Journal of Medicine. 327(5): 302-307.
  15. Kikuchi, A., Kishida, S. and Yamamoto, H. 2006. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Experimental and Molecular Medicine. 38(1): 1-10.
  16. Lan, X.Y., Pan, C.Y., Chen, H., Lei, C.Z., Zhang, H.Y. and Ni, Y.S. 2009. Novel SNP of the goat prolactin gene (PRL) associated with cashmere traits. Journal of Applied Genetics. 50(1): 51-54.
  17. Lu, Y.C., Chen, Y.J., Wang, H.M., Tsai, C.Y., Chen, W.H., Huang, Y.C., Fan, K.H., Tsai, C.N., Huang, S.F., Kang, C.J., Chang, J.T.C. and Cheng, A.J. 2012. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prevention Research. 5(4): 665-674.
  18. Melnik, B.C., John, S.M., Carrera-Bastos, P. and Cordain, L. 2012. The impact of Cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutrition and Metabolism. 9(1): 1-24.
  19. Moshel, Y., Rhoads, R.E. and Barash, I. 2006. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. Journal of Cellular Biochemistry. 98(3): 98: 685-700.
  20. Mumtaz, Kh.I. 2002. Method of food preservation and Sterilization: Commercial Method of food preservation. Bawarchi: health and nutrition. Copyright Satyan Infoway Ltd.
  21. Musters, S., Coughlan, K., McFadden, T., Maple, R., Mulvey, T. and Plaut, K. 2004. Exogenous TGF-β1 promotes stromal development in the heifer mammary gland. Journal of Dairy Science. 87(4): 896-904.
  22. Noppe, H., Le Bizec, B., Verheyden, K. and De Brabander, H.F. 2008. Novel analytical methods for the determination of steroid hormones in edible matrices. Analytica Chimica Acta. 611(1): 1-16.
  23. Oliver, C.H. and Watson, C.J. 2013. Making milk: A new link between STAT5 and Akt1. Jak-Stat. 2(2): 2154-2168.
  24. Orford, M., Tzamaloukas, O., Papachristoforou, C. and Miltiadou, D. 2010. A simplified PCR- based assay for the characterization of two prolactin variants that affect milk traits in sheep breeds. Journal of Dairy Science. 93(12): 93: 5996-5999.
  25. Plath, A., Einspanier, R., Peters, F., Sinowarz, F. and Schams, D. 1997. Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation. Journal of Endocrinology. 155(3): 501-511.
  26. Raven, L.A., Cocks, B.G., Goddard, M.E., Pryce, J.E. and Hayes, B.J. 2014. Genetic variants in mammary development, prolactin signaling and involution pathways explain considerable variation in bovine milk production and milk composition. Genetics Selection Evolution. 46(1): 29.
  27. Rodriguez Neira, J.D. Correa Londono, G.A. and Echeverri Zuluaga, J. J. 2013. Prediction models for total milk yield and fat percentage using partial samples. Revista Facultad Nacional de Agronomía Medellín. 66(1): 6909-6917.
  28. Smalley, M.J. and Dale, T.C. 1999. Wnt Signaling in mammalian Development and Cancer. Cancer and Metastasis Reviews. 18(2): 215-230.
  29. Stampfer, M.R., Yaswen, P., Alhadeff, M. and Hosoda, J. 1993. TGFβ induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects. Journal of Cellular Physiology, 155(1): 210-221.
  30. Tabass-Madrid, D., Muniategui, A., Sanchez-Caballero, I., Martinez-Herrera, D.J., Sorzano, C.O.S., Rubio, A. and Pascual-Montano, A. 2014. Improving miRNA-mRNA interaction predictions. BMC Genomics. 15(S10): 1-12.
  31. Warnefors, M., Liechti, A., Halbert, J., Valloton, D. and Kaessmann, H. 2014. Conserved microRNA editing in mammalian evolution, development and disease. Genome Biology. 15(6): 1-14.
  32. Wickramasinghs, S., Canovas, A., Rincon, G. and Medrano, J.F. 2014. RNA sequencing: a tool to explore new frontiers in animal genetics. Livestock Science. 166: 206-216.