مقایسه ترکیبات شیمیایی، خصوصیات تخمیر و ارزش غذایی ارقام مختلف سورگوم علوفه ای سیلو شده به روش آزمون تولید گاز

نوع مقاله : مقاله پژوهشی

نویسنده

مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان

چکیده

سابقه و هدف: کاشت گیاهان علوفه‌ای با توان تولید و کیفیت بالا و سازگار با شرایط آب و هوایی ایران به دلیل کمبود علوفه در ایران مورد توجه زیادی قرار گرفته‌است. امروزه علاوه بر ارقام بومی متداول، کشت ارقام هیبرید پر محصول سورگوم در ایران رو به افزایش است. سورگوم نه تنها از عملکرد بالائی برخوردار است بلکه با شرایط اقلیمی اکثر مناطق ایران به خصوص مناطق خشک و معتدل سازگاری خوبی دارد. سورگوم از مهم ترین گیاهان علوفه‌ای مناطق خشک و نیمه خشک دنیاست که به علت سازگاری با شرایط گرم و تا حدی شوری خاک و بالا بودن بازده مصرف آب می‌تواند تولید خوبی داشته باشد. این گیاه قادر است که آب را بهتر دیگر علوف ها جذب کند .هدف از این تحقیق تعیین میزان عملکرد، ترکیبات شیمیایی ، خواص سیلویی ونیزتخمین انرژی متابولیسمی، قابلیت هضم ماده آلی ، قابلیت هضم ماده آلی در ماده خشک و اسیدهای چرب فرار به روش تولید گاز ارقام سورگوم علوفه ای بود.
مواد و روش ها: ااین آزمایش به منظور تعیین میزان عملکرد، ترکیبات شیمیایی، خواص‌سیلویی، تخمین انرژی‌متابولیسمی و اسیدهای چرب‌‌ فرار، قابلیت هضم ماده‌آلی، قابلیت هضم ماده‌آلی در ماده خشک ارقام سورگوم علوفه‌ای شامل: ICRISAT520×R166، ICRISAT625×R165، ICRISAT623×R165، ICRISAT632×R165 و speed feed (اسپیدفید) به روش تولید‌گاز در قالب طرح کاملاً تصادفی با پنج تکرار انجام شده‌است. ارقام سورگوم خرد‌شده در قطعات 2 سانتیمتری در سطل‌های 10 کیلویی فشرده و ذخیره‌گردید. بعد از 45 روز ماده خشک، پروتئین‌خام، چربی‌خام، الیاف نامحلول در شوینده‌اسیدی و خاکستر‌خام، قندهای‌محلول و ازت آمونیاکی مواد سیلویی اندازه‌گیری شد.
یافته ها: :بیشترین عملکرد ماده خشک و پروتئین‌خام ( کیلوگرم در هکتار) مربوط به سورگوم رقم ICRISAT520 ×R166 و کمترین عملکرد مربوط به سورگوم اسپیدفید بود. نتایج نشان‌داد که هیبرید های سیلو‌شده در این آزمایش از نظر درصد ماده خشک، ماده‌آلی، پروتئین خام، چربی‌خام، خاکستر‌خام، الیاف‌نامحلول در شوینده‌اسیدی، قندهای‌محلول و ازت‌آمونیاکی اختلاف معنی‌داری با‌هم دارند. رقم ICRISAT625×165 دارای بیشترین مقدار گاز‌تجمعی، انرژی متابولیسمی، قند‌محلول، اسیدهای چرب فرار و چربی‌خام بود. اما‌‌ رقم‌های ICRISAT520 ×R166و ICRISAT632×R165 دارای مقادیر کمتری بودند. اختلاف بین ارقام سورگوم از نظر تخمین میزان قابلیت هضم ماده‌آلی‌و قابلیت‌هضم‌ ماده‌آلی در ماده‌خشک با استفاده از میزان گاز تولیدی معنی‌دار نبود.
نتیجه گیری: بر اساس نتایج این تحقیق، رقم ICRISAT520×R166 از نقطه نظر تولید ماده خشک (18487 کیلوگرم در هکتار) وتولید پروتئین (1400 کیلوگرم در هکتار) قابل توصیه برای کشت در استان گلستان می‌باشد ، اما رقم ICRISAT625 ×R165 به دلیل مقدار انرژی قابل‌متابولیسم و ماده‌آلی قابل هضم بیشتر نسبت به بقیه ارقام ارجحیت دارد .

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Chemical Composition, Fermentation Characteristics and Nutritional Value of Different Sorghum Cultivars by Gas Production Test

نویسنده [English]

  • abdolah kavian
Golestan Agricultural and Natural Resources Research and Education Center
چکیده [English]

Background and objective:Planting of fodder plants with high production potential and high quality and adapted to Iran's climate conditions due to lack of forage in Iran has been considered. Today, in addition to common indigenous cultivars, sorghum hybrids cultivate growing in Iran is increasing. Not only does sorghum have a high yield, but it is well adapted to climatic conditions in most parts of Iran, especially in dry and temperate regions. This plant is able to absorb water better than other grasses This plant is one of the most important forage forests in arid and semi-arid regions of the world. It can be productive due to adaptation to warm conditions and to a certain extent soil salinity and high water use efficiency. The purpose of this study was to determine the amount of yield, chemical composition, silage properties and energy metabolism, digestibility of organic matter, digestibility of organic matter in dry matter and volatile fatty acids by the method of gas production of forage sorghum cultivars.

Materials and methods: In order to investigate the fermentation quality and nutritive value of five variety of sorghum silages, different sorghum cultivars Viz: ICRISAT623×R165, ICRISAT632×R165, ICRISAT625×165, ICRISAT520×166 and Speed feed were compared in completely randomized design with five replicates. For this purpose sorghum cultivars was obtained at dent stage, chopped with an average particle length of 2 cm and were preserved in 10kg plastic boxes. Silos were kept at room temperature and opened at 45 days for determination of pH , DM, CP, EE, ADF, Ash , WSC and NH3-N. The Gas productions were used for determination of digestion and fermentation of samples.
Results: maximum dry matter by 1400.5 Kg per hectare and metabolism energy by 131627 Mcal per hectare obtained in ICRISAT520 ×R166, Whereas cultivars Speed Feed provided Minimum. The highest gas production , metabolisable energy, water-soluble carbohydrate (WSC), Volatile fatty acids and Ether Extract was observed in ICRISAT625×165. Whereas ICRISAT520 ×R166 and ICRISAT632×R165 had the lowest. Results indicated that there were significant differences between different cultures in %DM, %OM, %CP, %EE, %Ash, %ADF, %WSC and %NH3-N.The ICRISAT 165 × 165 has the highest amount of cumulative gas, metabolisable energy, soluble sugar, volatile fatty acids and crude fat. However, ICRISAT520 × R166 and ICRISAT632 × R165 had lower values. There was no significant difference between cultivars in estimating of organic matter digestibility (OMD) and digestible organic matter in dry matter (DOMDM) using the amount of gas production.
Conclusion: Based on the results of this study, ICRISAT520 × R166 for dry matter production (18487 kg ha-1) and protein production (1400 kg ha-1) is recommended for cultivation in Golestan province. But in terms of yield per hectare, ICRISAT625×165 varieties is recommended for the rest of the cultivars.

کلیدواژه‌ها [English]

  • Sorghum
  • Nutritional value
  • Fermentation Characteristics
  • Gas Production Test
1.Abarghuei, M.J., Rouzbehan, Y. and Zamiri, M.J. 2014. Effect of non-extracted and extracted pomegranate-peel on in vitro gas production parameters of inoculum of Ghezel sheep. J. Rumin. Res. 38: 212-219.
2.Almodares, A., Hadi, M.R. and Ahmadpour, H. 2008. Sorghum stem yield and soluble carbohydrate under phonological stages and salinity levels.  Afr. J. Biotechnol. 7: 4051-4055.
3.AOAC, 1990. Official Methods Analysis. 15th ed. Association of Official Analytical Chemists. Washing Town, D.C.
4.Anigbogu, M.N. 2003. Supplementation of dry brewer’s grain to lower quality forage diet for growing lambs in southeast Nigeria. Asian-Australian J. Anim. Sci. 16: 384-388.
5.Ashbell, G., Weinberg, Z.G., Bolsen, K. K., Hen, Y. and Arieli, A. 1990. The silage characteristics of two varieties of forage sorghum mixed in different proportions and at two stages of maturity. Afr. J. Range. Forage. Sci. 15: 68–71.
6.Atis, I.,  Konuskan, O., Duru, M., Gozubenlİ., H and  Yİlmaz, S. 2012. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars. International J. Agri. Bio. 14: 879-886.
7.Bean, B., McCollum, T., Pietsch, D., Rowland, M., Porter, B. and VanMeter, R. 2002. Texas anhandle Forage Sorghum Silage Trail. The Agriculture Program of Texas A and M University System.
8.Blummel, M., Makkar, H. P. S. and Becker, K. 1997. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nut. 77: 24–34.
9.Bolsen, K.K. 2004. Sorghum silage: a summary of 25 years of research at Kansas State University. In: Proceeding of the Southeast Dairy Herd Management Conference, Macon, Georgia, USA.  16-17.
10.Borges, A.L.C., Goncales, L.C.,  Nogueria, F.S. and Rudriguez, N. M. 1999. Forage sorghum silage with different tannin concentration and moisture in the stem. II. Variation of carbohydrates during fermentation. Arquivo Brasileiro de Medic. Vet. Zootec. 51: 491-497.
11.Colombini, S.G. and Galassi, G.M. 2009. Sorghum forage as an alternative to corn silage in dairy cows feeding. J. Dairy. Sci. 92: E –Suppl. 1.
12.Fazayeli, H., Golmohhammadi, A., Al-Moddarres, A., Mosharraf, S. and  Shoaei, A.A. 2006.  Comparing the performance of sorghum silage with maize silage in feedlot calves. Pakistan. J. Biol. Sci. 9(13): 2450-2455.
 13.Gourley, L.M. and Lusk, J.W. 1978. Genetic parameters related to sorgum silage quality. J. Dairy. Sci. 61: 1821-1827.
14.Gutierrez, G.G., Schake, L. M. and Byres, F.M. 1982. Whole-plant grain sorghum silage processing and lasalocid effects on stocker calf performance and rumen fermentation. J. Anim. Sci. 54: 863–868.
15.Hattori, I., Kumai, S., Fukumi, R. and Bayorbor, T.B. 1994. The effect of some additives on aerobic deterioration of corn silage. J. Anim. Sci. Tech. 65: 547-550.
16.Karabulut, A., Canbolat, O., Kalkan, H., Gurbuzol1, F., Sucu, E. and Filya, I. 2007. Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Aust. J. Anim. Sci. 4: 517-522.
17.Khalili Moheleh. J., Tajbakhsh, M., Faiaz Moghdam, A. and Siadat, A. 2007. Effects of   plant density on quantitative and qualitative characteristics of forage sorghum in second cropping. J. Pajouhesh. Sazandegi. 75: 59-67. (In Persian).
18.Khanum. S. A. and Yaqoob, T. 2007. Nutritional evaluation of various feedstuffs for livestock production using in vitro gas method. Pakistan. J. Vet.  27(3): 129-133.
19.Kilic, A. 1986. Silo Feed (Instruction, Education and Application Proposals). Bilgehan Press. Izmir. 327 Pp.
20.Luis, F., Marcelo, A., Adriana. G., Jose, N., Luiz, H. and Viviany, L. 2012. Nutritive value of diferents silage sorghum (Sorghum bicolor L. Moench) cultivares. Acta Scientiarum. J. Anim. Sci. 34: 123-129.
21.Mahanta. S.K. 2005. Nutritional Evaluation of Two Promising Varieties of Forage Sorghum in Sheep Fed as Silage. Asian-Aust. J. Anim. Sci. 12: 1715-1720.
22.Makkar. H.P.S. 2004. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. Assessing quality and safety of animal feeds. FAO. 160: 55-86.
23.Man, N. and Wiktorsson, H. 2003. The effect of molasses on quality, feed intake and digestibility by heifers of silage made from cassava tops. Department of Animal Nutrition, UAF, Thu Duc, Ho Chi Minh City. Vietnam. Internet Collection.
24.Marielly, M. A. M and Daniel, A. C. 2016. Chemical composition of sorghum genotypes silages. Acta. J. Anim. Sci.  38(4): 369-373.
25.McDonald, P., Henderson, A.R. and Heron, S.J.E. 1991. The Biochemistry of Silage. 2nd Edn., Chalcombe Publications, Marlow, Bucks, UK. ISBN: 0-948617-22-5. 340 Pp.
26.McCorkle, D. 2007. The economic benefits of sorghum silage as an alternative crop. MKT-3557L 06/07. Agri. Life Extension, Texas A and M System.
27.Menk, K.H. and Raad, L. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 93: 271-222.

28.Mirlohi, A.,  Bozorgvar, N. and Bassiri, M. 2000. Effect of nitrogen rate on growth, forage yield and silage quality of three sorghum hybrids. J. Sci. Technol. Agri. Natur. Res. 4(2): 20-26.

29.Miron, J., Zuckernan, E., Adin G., Nikbacht, M., Yosef, E., Zenou, A., Weinberg, Zwi, G., Solomon, R. and Ben-Ghedalia, D. 2007. Field yield, ensiling properties and digestibility by sheep of silages from two forage sorghum varieties. J. Anim.  Feed Sci. Technol. 136: 203-215.
30.Miron, J., Solomon, R., Adin, G.U.,  Nikbakht, M., Yosef, E., Carmi, A., Weinberg, T., Kipnis, Z.G.,  Zuckerman, E.  and Ben-Ghadalia, D. 2006. Effects of harvest stage, re-growth and ensilage on the yield, composition and in vitro digestibility of new forage sorghum varieties. J. Sci. Food. Agric. 86: 140-147.
31.Molina, L.R., Rodriguez, N.M., Sousa, B.M., Goncalves, L.C. and Borges, I. 2007. Potential degradability parameters of the dry matter and crude protein of six sorghum silage genotypes (Sorghum bicolor (L.) Moench), with or without tannin on grain, evaluated by in situ Technique. Revista Brasileira de Zootecmia. 32(1): 222-228.
 32.Muhammad, A., Muhammad, A. N., Asif, T. and Azhar, H. 2002. Effect of different levels of nitrogen and harvesting times on the growth, yield and quality of sorghum fodder. Asian. J. plant. 1: 304-307.
33.Omer, T., Yazici, L. and Yildirim, B. 2008. Quality chararcteristics of sorghum (Sorghum bicolor (L.) moench) and Sorghum × Sudan Grass Hybrids (Sorghum bicolor (L.) J. Anim. Vet. 7(8): 968-971.
34.Pahlow, G., Muck, R. E., Driehuis, F., Elfrink, S. J. and Spolestra, S. 2003. Microbiology of Ensiling. Silage j. Science.Technology, 31-93.
35.Paya, H., Taghizadeh. A., Janmohammadi, H. and Moghadam. G.A. 2007. Nutrient Digestibility and Gas production of some Tropical Feeds Used in Ruminant Diets Estimated by the in vivo and in vitro Gas production Techniques. American J. Anim. Vet. Sci. 2(4): 108-113.
 36.Paulo, R.F. 2000. Additives to improve the silage making process with tropical forages. Departamento de Zootecnia, Faculdade de Agronomia Universidade Federal do Rio Grande do Sul.
  37.Pimental, J.O., Silva, J.C., Valadares Filho, S.C., Cecon P.R. and Santos, P.S. 1998. Effect of protein supplementation on the nutritional value of corn and sorghum silages. Revista Brasileira Zootecnia. 27: 1042-1049.
38.Raei, Y., Jorat, M., Moghaddam, H., Chaich, M.R. and Weisany, V. 2013. Effect of density on onnotative and collective yield of forage sorghum under water limitation. J. Agri. Sci. ustainable Product.4: 51-65.
39.Ranjhan, S.K. 1993. Animal Nutrition in Tropics. 3rd rev. ed. Vikas Publishing House Pvt. Ltd., New Delhi. Reid, C.S. W. Limitations to the productivity.
40.Sallam, S.M.A., Silva Bueno, I.C., Godoy, P. B., Eduardo, F. N., Schmidt, D.M.S. and Abdalla, A.L. 2010. Ruminal fermentation and tannins bioactivity of some browses using a semi-automated gas production technique. Trop. Subtrop. J. Agroecosyst. 12: 1-10.

41.Sarah, Q., Ketterings, M., Gregory, S. G., Debbie, J.C., Jerome, H.C., Michael, E.V., John, J and Tom, F. 2019. Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. J. Dairy. Sci. 102: 7134-7149

42.SAS Institute. 2004. SAS User’s Guide. Version 9.1. SAS Inst. Inc., Cary, NC.

43.Schmid, J., Sipocz, J., Kaszfis, I., Szakfics, G. and Gyepesm, A. 1997. Preservation of sugar content in ensiled sweet sorghum. J. Bio. Technol. 60: 9-13.

44.Souza, V., Pereira, G., Moraes, O.G., Garcia, S.A., Filho, R.V., Zago, S. C.,and Frietas, C.P. 2003. Nutritivo de Silagens de Sorgo. Revista Brasileira de Zootecnia. 32: 753-759.
45.Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T., and Sivakumaram, S. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. J. Anim. Feed. Sci. Technol. 124: 403- 419.
46.Valter, H., Bumbieris, J., Vinícius, A., Ana, P., Fernando, L., Gabriella, J. and Diego, A. 2017. Aerobic stability in corn silage (Zea mays L.) ensiled with different microbial additives. J. Acta Scientiarum. Anim. Sci. Maringá. 4: 357-362.

47.Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant. Third ed. Cornell University Press. Ithaca. NY. USA.

48.Ward, J.D., Readfern, D.D., McCormick, M.E. and Cuomo, G.J. 2000. Chemical Composition, Ensiling Characteristics, and Apparent Digestibility of Summer Annual Forages in a Subtropical Double-Cropping System with Annual Ryegrass. J. Anim. Sci. 84: 177-182.

49.Weiss, B. 2007. Silage as Starch Sources Cows. Mid- South Ruminant Nutrition Conference.  Arlington. Texas.  7-14.