مقایسه مدل خطی و شبکه عصبی مصنوعی در پیش‌بینی تولید شیر با استفاده از رکوردهای اولین دوره شیردهی ثبت شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان

2 استادیار موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 دانشیار موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

4 استادیار بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

5 سازمان جهاد کشاورزی استان گلستان

چکیده

سابقه و هدف: پیش‌بینی دقیق تولید شیر یکی از ملزومات مدیریت دامپروری و مدل‌سازی درآمد دامداران در تجزیه و تحلیل های هزینه-فایده می‌باشد. بطوری که پیش‌بینی دقیق رکوردهای آینده می‌تواند طول دوره رکوردبرداری را کاهش دهد. برآوردهای زودهنگام ارزش اصلاحی گاوهای نر با استفاده از رکوردهای بخشی از دوره شیردهی می‌تواند باعث کاهش فاصله نسل و بیشتر شدن شدت انتخاب و پیشرفت ژنتیکی گردد. مدل خطی یکی از روشهای مرسوم مدلسازی در تحقیقات رشته های مختلف علوم می باشد. شبکه عصبی مصنوعی روشی مبتنی بر هوش مصنوعی است که اصول کارکرد آن مانند سلول‌های مغز انسان می‌باشد. کاربرد آسان شبکه عصبی مصنوعی و توان مدل‌سازی توابع و روابط پیچیده یک از عوامل کاربرد وسیع آن است. در طول دو دهه گذشته انقلابی در جهت استفاده از شبکه‌های عصبی مصنوعی برای مدل‌سازی در حوزه‌های مختلف علوم ایجاد شده است که نشان از موفقیت کاربرد این تکنیک قدرتمند در حل دامنه وسیعی از مشکلات مربوط به علوم مختلف می‌باشد. با این مقدمه تحقیق حاضر با هدف پیش‌بینی تولید شیر گاوهای شیری در دوره‌های شیردهی مختلف با استفاده از تولید شیر اولین دوره شیردهی رکوردبرداری شده و مدل‌سازی شبکه عصبی مصنوعی انجام شد. علاوه بر آن نتایج مدل شبکه عصبی مصنوعی با مدل خطی مورد مقایسه قرار گرفت.
مواد و روشها: در این تحقیق از رکوردهای دو دوره‌شیردهی متوالی 2460 راس گاو شیری مربوط به یک گله استفاده شد. در شجره سری داده مورد استفاده تعداد 2517 گاو شیری وجود داشت. جهت برازش مدل شبکه عصبی مصنوعی، داده ها به دو دسته آموزش و آزمون تقسیم شدند. مدل شبکه عصبی با استفاده از داده‌های آموزش روابط بین خروجی و ورودی‌ها را یادگیری نمود. با پیش‌بینی خروجی داده-های آزمون توسط مدل و مقایسه برآوردها با اندازه‌های واقعی، پارامترهای برازش مدل مورد بررسی قرار گرفتند. ساختار شبکه‌ای که بهترین پارامترهای برازش را ایجاد می‌نمود در مدل شبکه عصبی مصنوعی مورد استفاده قرار گرفت. در نهایت، مدل خطی بر روی داده ها برازش شده و با مدل شبکه عصبی مصنوعی مورد مقایسه قرار گرفت.
یافته ها: بهترین ساختار مدل شبکه عصبی دارای 8 ورودی، 4 نرون در لایه پنهان اول، 2 نرون در لایه پنهان دوم و یک خروجی بود که ورودی‌های آنها شامل ارزش اصلاحی میانگین تولید شیر دوره اول شیردهی ثبت شده، نوبت زایش،‌ گروه پدری، سن اولین زایش ثبت شده، تعداد رکورد برای هر دوره شیردهی و میانگین، حداقل و حداکثر روزهای شیردهی ثبت شده و خروجی مدل شامل رکورد شیر تولیدی بود. مدل شبکه عصبی مورد استفاده، رکورد مربوط به دوره‌های شیردهی را به ترتیب با RMSE و ضریب تبیین 94/7 و 625/0 برآورد کرد. ضریب تبیین و RMSE مدل خطی مورد بررسی به ترتیب 39/0 و 63/26 بود.
نتیجه گیری: مدل شبکه عصبی مورد استفاده در این تحقیق قادر به پیش‌بینی تولید شیر دوره آینده بر اساس اطلاعات اولین دوره شیردهی ثبت شده بود. این تحقیق نشان داد که استفاده از مدل‌سازی شبکه عصبی می تواند در کاهش طول دوره رکوردبرداری برای ارزیابی ژنتیکی گاوهای شیری بخصوص گاوهای نر مفید می‌باشد و می‌تواند باعث کاهش فاصله نسل گردد. نتایج همچنین نشان داد که با بکارگیری مدل شبکه عصبی مصنوعی داده‌های ناقص نیز در ارزیابی ژنتیکی قابل استفاده می‌باشند. مقایسه تحقیق حاضر با تحقیقات گذشته نشان داد که استفاده از عوامل موثرتر برای تولید شیر به عنوان ورودی مدل می‌تواند دقت و صحت پیش‌بینی ها را افزایش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of linear model and Artificial Neural Network to Prediction of Milk Yield Using First Recorded Parity

نویسندگان [English]

  • hassan bane 2
  • saeed esmaeilkhanian 3
  • kazem yousefi 4
1
2 Associate prof, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
3 Associate prof, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
4 1Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
5
چکیده [English]

Background and Objectives: Precise prediction of milk yield is essential for management and modeling of farmer’s income in analysis of cost-benefit. Such that, accurate prediction of future records can decrease recording time. Early estimation of bull breeding value using partly records of parity can lower generation interval and increase selection intensity and genetic progress. Linear model is the most commonly used modeling method in research on different field of science. Artificial Neural Network (ANN) is based on artificial intelligent that uses working principles of human brain. Ease of application and power to model complex functions and relationships is factor of wide use of Artificial Neural Network. Revolutionized use of artificial neural network modeling in different aspects of science in the last two decades, is indication of successful application of this powerful technique to solve wide range of problems in different scientific issues. Therefore, object of current research is prediction milk yield of different parity milk production of dairy cattle using production of first recorded parity and artificial neural networks modeling. Furthermore, results of artificial neural network model compared with linear model.
Materials and methods: In current research, two sequential records of 2460 dairy cattle of a herd were investigated. Pedigree of used data set contained 2517 individuals. Data divided into two sub data of training and testing, to fitting Artificial Neural Network model. Artificial Network model learned the relationship between output and inputs of training data set. Adequacy parameters of the model investigated using model predicted outputs of testing data set and original outputs of the data. Network structure with the beast adequacy parameters were used for Artificial Neural Network model. Finally, linear model was fitted and compared with artificial neural network model.
Results: The best structure of Neural Network had 8 inputs, 4 neuron at first hidden layer, 2 neuron at second hidden layer and output of milk production that inputs were breeding value of average milk yield of first recorded parity, parity, sire group, age at first registered parturition, number of records for each parity and mean, minimum and maximum of recorded days in milk for each parity. The used artificial neural network model, predicted the parity milk production with RMSE and R2 of 7.94 and 0.625, respectively. R2 and RMSE of considered linear model was 0.39 and 26.63, respectively.
Conclusion: The applied model of artificial neural network appropriately predicted the subsequent parity production using precedent parity data. This research indicated that use of artificial network model can be beneficial for decreasing recording period for dairy cattle genetic evaluation specially in sire evaluation and will decrease generation interval. The results showed that incomplete data can be used for genetic evaluation using artificial neural network model. Comparison of the results with past reports indicated that use of effective inputs for milk production can increase accuracy and precision of the ANN model.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Generation interval
  • Prediction of Milk Production
1. Abdelgadir, I.E.O., Morrill, J.L. and
Higgins, J.J. 1996. Effect of roasted
soybeans and corn on performance and
ruminal and blood metabolites of dairy
calves. J. Dairy. Sci. 79: 465-474.
2. Aldrich, C.G., Merchen, N.R. and
Drackley, J.K. 1995. The effect of
roasting temperature applied to whole
soybeans on site of digestion by steers:
I. Organic matter, energy, fiber, and
fatty acid digestion. Neutral detergent
fiber(NDF) Animal. Sci. 73: 2120-2130.
3. Alipoure, H.R. and Amanlou, H. 2014.
Effects of different levels of whole
soybeans on performance of lactating
Holstein dairy cows in early lactation
period . J. Ruminant. Res. 1(4): 31-46.
4. Amanlou, H., Maheri-Sis, N., Bassiri,
S., Mirza-Aghazadeh, A., Salamatdust,
R., Moosavi, A. and Karimi, V. 2012.
Nutritional value of raw soybeans,
extruded soybeans, roasted soybeans
and tallow as fat sources in early
lactating dairy cows. J. Vet. 2: 88-94.
5. AOAC. 2006. Official Methods of
Analysis, 19th ed. Official Methods of
Analysis of AOAC International,
Gaithersurg, MD, USA.
6. Ariza, P., Bach, M.D., Stern, M.D. and
Hall, M.D. 2001. Effects of
carbohydrates from citrus pulp and
hominy feed on microbial fermentation
in continuous culture. J. Animal. Sci. 79:
2713–2718.
7. Bailoni, L., Bortolozzo, A., Mantovani,
R., Simonetto, A., Schiavon, S. and
Bittante, G. 2004. Feeding dairy cows
with full fat extruded or toasted soybean
seeds as replacement of soybean meal
and effects on milk yield, fatty acid
profile and CLA content. Ita. J. animal.
Sci. 3: 243-258.
8. Erjaei, K., Zali, A., Ganjkhanloo, M.
and Dehghan-Banadaky, M. 1391.
Effect of wheat processing with
different fat sources on performance,
blood and ruminal metabolites of
Holstein bull. J. animal. Sci. 22(4): 127-
140.
9. Faldet, M., Voss. V., Broderick, G. and
Satter, L. 1991. Chemical, in vitro, and
in situ evaluation of heat-treated
soybean proteins. J. Dairy. Sci. 74:
2548-2554.
10. Faldet, M.A., Satter. L.D. and
Broderick, G.A. 1992a. Determining
optimal heat treatment of soybeans by
measuring available lysine chemically
and biologically with rates to maximize
protein utilization by ruminants. J.
nutrition. 122: 151-160.
11. F.A.O. 2010. Food and Agriculture
Organization of the United Nations.
Web site, In: http://faostat.fao.org.
12. Fathi Nasri, M.H., Danesh Mesgaran,
M., Kebreab, E. and France, J. 2007.
Past peak lactational performance of
Iranian Holstein cows fed raw or roasted
whole soybeans. Can. J. Animal. Sci.
87(3): 441-447.
13. Fathi Nasri, M.H., France, J., Danesh
Mesgaran, M. and Kebreab, E. 2008.
Effect of heat processing on ruminal
degradability and intestinal
disappearance of nitrogen and amino
acids in Iranian whole soybean. G.
Livestock. Sci. 113: 43-51.
14. Grummer, R.R., Luck, M.L. and
Barmore, J.A. 1994. Locational
performance of dairy cowsfed raw
soybeans, with or without animal byproduct
proteins, or roasted soybeans. J.
Dairy. Sci. 77(5): 1354-1359.
15. Imani Rad, M., Rouzbehan, Y., and
Rezaei, J. 2016. Effect of dietary
replacement of alfalfa with ureatreatedalmond
hulls on intake, growth,
digestibility, microbial nitrogen,
nitrogen retention, ruminal fermentation,
and blood parameters in fattening lambs.
J. Animal. Sci. 94: 349– 358 .
16. Kim, S., Lee, J. and Park, S. 2016.
Effects of full-fat soybean diet on
performance, carcass characteristics, and
fatty acid composition of Hanwoo
steers. Turkish. J. Veterinary and
Animal. Sci. 40: 451-458.
17. Krishnamoorthy, U., Muscato, T.,
Sniffen, C. and Van Soest, P. 1982.
Nitrogen fractions in selected feedstuffs.
J. Dairy. Sci. 65: 217-225.
18. Leeson, S.J. and Atteh, J.O. 1996.
Response of broiler chicks to dietary
full-fat soybeans extruded at different
temperatures prior to and after grinding.
J. Animal. Feed. Sci. Technology. 57:
239-245.
19. Liu, Z.L., Yang, D.P., Chen, P., Lin,
S.B., Jiang, X.Y., Zhao, W.S., Li, J.M.
and Dong, W.X. 2008. Effect of dietary
sources of roasted oilseeds on blood
parameters and milk fatty acid
composition. J. Anim. Sci. 5: 219–226.
20. Maekawa, M., Beauchemin, K.A. and
Christensen, D.A. 2002. Chewing
activity, saliva production, and ruminal
pH of primiparous and multiparous
Lactating Dairy Cows. J. Dairy. Sci. 85:
1176–1182.
21. McDonald, P., Edwards, R.A.,
Greenhalgh, J.F.D., Morgan, C.A. 2002.
Animal Nutrition, sixth ed. Longman,
London UK. 451–464.
22. Mertens, D.R. 1997. Creating a system
for meeting the fiber requirements of
dairy Cow. J. Dairy. Sci. 80: 1463-1481.
23. Mialon, M.M., Renand, G., Ortigues-
Marty, I., Bauchart, D., Hocquette, J.F.,
Mounier, L., Noel, T., Micol, D. and
Doreau. M. 2015. Fattening
performance, metabolic indicators, and
muscle composition of bulls fed fiberrich
versus starch plus lipid-rich
concentrate diets. J. Anim. Sci. 93: 319-
333.
24. Monica, P., Iofciu, A., Grossu, D. and
Iiescu, M. 2001. Efficiency of toasted
full fat soybeans utilization in broiler
feeding. Archiva Zootechnica. 6: 151-
153.
25. Moradi, M., Maghsoudlou, S., Rostami,
F. and Mostafalou, Y. 2013. Effects of
Different Levels of Substitution of
Extruded Soybean with Soybean Meal
and Vitamin E Supplementation on
Performance and Carcass Characteristics
of Broiler Chicks. Res. Anim. Prod.
1(4): 15-25.
26. Moura, L.V., Oliveira, E.R. and
Fernandes, A.R.M. 2017. Feed
efficiency and carcass traits of feedlot
lambs supplemented either monensin or
increasing doses of copaiba (Copaifera
spp.) essential oil. J. Anim. Feed. Sci.
and Technology. 232: 110-118.
27. Nutrition, N.R.C. 2001. Nutrient
Requirement of Dairy Cattle, (National
Academies).
28. Nutrition, N.R.C 2007. Nutrient
Requirements of Small Ruminants:
Sheep, Goats, Cervids and New
Camelids. (National Academies).
29. Rabiee, A.R., Breinhild, K., Scott, W.,
Golder, H.M., Block, E. and Lean, I.J.
2012. Effect of fat additions to diets of
dairy cattle on milk production and
components: A meta-analysis and metaregression.
J. Dairy. Sci. 95: 3225–
3247.
30. Reddy, P.V., Morrill, J.L. and Bates,
L.S. 1993. Effect of roasting
temperatures on soybean utilization by
young dairy calves. J. Dairy. Sci. 76:
1387-1393.
31. Robles, V.L., González, A., Ferret, A.,
Manteca, X. and Calsamiglia, S. 2007.
Effects of feeding frequency on intake,
ruminal fermentation, and feeding
behavior in heifers fed high-concentrate
diets. J. Anim. Sci. 85: 2538-2547.
32. Rong, Y., Jian-guo, H., Xian, Z.,
Zhiqiang, L. and Yuzhu, H. 2010.
Effects of different corn silage: Alfalfa
silage ratios and full fat extruded
soybeans on milk composition,
conjugated linoleic acids content in milk
fat and performance of dairy cows. Afr.
J. Biotechnol. 9: 5465-5464.
33. Sadr Erhami, E., Ghorbani, G., Kargar,
S. and Sadeghi sefid Mazgi, A. 2015.
Effect of feeding processed soybean as
replacement for soybean meal on
performanc physically effective fiber of
diet, feed intake, and chewing behavior
of mid-lactating Holstein dairy cows.
Iranian J. Vet. Clinic. Sci. 2: 87-102. (In
Persian).
34. Schwab, C.G., Tylutki, T.P., Ordway,
R.S., Sheaffer, C. and Stern, M.D. 2003.
Characterization of proteins in feeds. J.
Dairy. Sci. 86: E88-E103.
35. Stokes, C.K., Miller, B.G., Bailey, M.,
Wson, A.D. and Bourne, F.J. 1987. The
Immune response to dietary antigens
and its influence on disease
susceptibility in farm animals. J. Vet.
Immu. 17: 413-423.
36. Tahmasbi, A.M., Aazami, M.H. and
Naserian, A.A. 1396. Effects of
substitution of processed soybean seed
with soybean meal on performance,
nutrient digestibility, and some blood
and ruminal parameters in Holstein
dairy cows. J. Rumin. Res. 5(4): 61-72.
37. Van Keulen, J. and Young, B.A. 1977.
Acid insoluble ash as a natural marker
for digestibility studies. J. Dairy. Sci.
44: 282-287.
38. Van Soest, P.J. 1994. Nutritional
Ecology of the Ruminant. 2nd ed.
Cornell University Press, Comstock
Publications. New York, NY, USA. Pp:
476.
39. Yang, W.Z., Beauchemin, K.A. and
Rode, L.M., 2000. Effects of barley
grain processing on extent of digestion
and milk production of lactating cows. J.
Dairy. Sci. 83: 554-568.