تجزیه و تحلیل همخونی در گوسفند نژاد قره گل: ضرایب همخونی جزئی، همخونی اجدادی بالو و همخونی اجدادی کالینفسکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز - دانشکده کشاورزی و منابع طبیعی اهر - گروه علوم دامی

2 دانش آموخته کارشناسی ارشد ژنتیک و اصلاح دام دانشکده کشاورزی و منابع طبیعی اهر – دانشگاه تبریز

3 استادیار گروه علوم دامی دانشکده کشاورزی و منابع طبیعی - دانشگاه گنبد کاووس

چکیده

چکیده
سابقه و هدف: به افزایش میزان هموزیگوسیتی در نتاج حاصل از آمیزش بین افرادی که دارای جد مشترک بوده و یا از نظر ژنتیکی با یکدیگر خویشاوندند همخونی اطلاق می شود. مهمترین اثر همخونی کاهش در عملکرد صفات اقتصادی حیوانات می‌باشد که از آن به عنوان پسروی همخونی یاد می‌شود و میزان آن در بین صفات و جمعیت‌های مختلف یکسان نمی‌باشد. تحقیقات اخیر نشان داده که میزان پسروی همخونی در بین نوادگان حاصل از اجداد مختلف نیز متغیر می‌باشد. وقتی توزیع آلل‌های مغلوب نامطلوب بین حیوانات بنیانگذار یک جمعیت نامتوازن باشد، میزان پسروی همخونی مشاهده شده در بین نوادگان آنها نیز می‌تواند با هم متفاوت باشد. علاوه بر این، اثرات مضر همخونی می‌تواند در اثر پالایش ژنتیکی آلل‌های مغلوب از طریق انتخاب بر علیه ژنوتیپ‌های هموزیگوت مغلوب در نسل‌های پیشین کاهش یابد. برآورد ضریب همخونی جزئی و ضریب همخونی اجدادی امکان بررسی توزیع متوازن آلل‌های مغلوب در ژنوم حیوانات بنیانگذار و وقوع پالایش ژنتیکی در جمعیت را امکان‌پذیر می‌سازد. هدف از تحقیق حاضر برآورد ضرائب همخونی رایت، همخونی جزئی، همخونی اجدادی بالو و همخونی اجدادی کالینفسکی در گله اصلاح نژادی گوسفند قره‌گل می‌باشد.
مواد و روش‌ها: در این تحقیق از فایل شجره گله اصلاح نژادی گوسفند قره‌گل که حاوی 7477 رکورد شجره جمع‌آوری شده در طی سال‌های 1368 تا 1393 بود جهت برآورد ضرائب همخونی، همخونی جزئی و همخونی اجدادی دام‌ها استفاده گردید. جهت بررسی کیفیت شجره، شاخص تکامل شجره دام‌ها محاسبه گردید. حیوانات متولد شده در 4 سال آخر فایل شجره با شاخص تکامل شجره بالای 6/0 به عنوان جمعیت مرجع جهت تجزیه همخونی به همخونی جزئی حاصل از حیوانات بنیانگذار جمعیت در نظر گرفته شدند. همخونی اجدادی بالو برای همه افراد جمعیت برآورد گردید. همچنین همخونی دامها به دو بخش همخونی جدید و همخونی اجدادی کالینفسکی تجزیه گردید.
یافته‌ها: میانگین ضریب همخونی رایت در دام‌های کل جمعیت و دام‌های جمعیت مرجع به ترتیب 85/0 و 36/1 درصد بود. 108 فرد از 280 فرد بنیانگذار جمعیت مرجع (38%) در ضریب همخونی جمعیت مرجع مشارکت مثبت داشته‌اند. میانگین و انحراف معیار ضریب همخونی جزئی این 108 رأس به ترتیب 19/5 و 37/7 درصد بود. بخش زیادی از کل ضریب همخونی جمعیت مرجع یعنی 42 و 66 درصد آن به ترتیب توسط 10 و 25 فرد بنیانگذار با بیشترین مشارکت در همخونی این جمعیت تبیین گردید. میانگین همخونی اجدادی بالو در کل جمعیت و افراد جمعیت مرجع به ترتیب 17/1 و 12/2 درصد بود. مقدار ضریب همخونی اجدادی بالو برای اکثر افراد همخون جمعیت مثبت بود. میزان همخونی اجدادی کالینفسکی دامها پایین و میانگین آن در جمعیت برابر با 07/0 درصد بود. همخونی اجدادی موجود در این جمعیت بیشتر با تعریف بالو برای همخونی اجدادی منطبق بود. همبستگی ضریب همخونی رایت با ضرائب همخونی بالو، کالینفسکی و جدید به ترتیب 1/0 ، 37/0 و 99/0 بود (01/0P<).
نتیجه گیری: بر اساس نتایج این تحقیق، ضریب همخونی اجدادی بالو در دامهای این گله روند افزایشی داشته است که می-تواند در نتیجه پدیده پالایش ژنتیکی آلل‌های مغلوب در این جمعیت باشد. از این رو جهت بررسی وقوع پالایش ژنتیکی آلل‌های مغلوب در این جمعیت، برآورد تاثیر همخونی اجدادی بر صفات تولیدی و تولید مثلی در این گله پیشنهاد می‌گردد. همچنین می‌توان با استفاده از ضرائب همخونی جزئی محاسبه شده، سهم هر کدام از حیوانات بنیانگذار را در میزان پسروی همخونی مشاهده شده تعیین نمود. از سوی دیگر این ضرائب همخونی جزئی می‌تواند به شناسایی حیوانات بنیانگذار حامل ژنهای نامطلوب کمک نماید. این اطلاعات می‌تواند در برنامه‌های آمیزشی گله در جهت طراحی تلاقی‌ها مورد استفاده قرار گیرد، بطوریکه بره‌های حاصل، دارای مقادیر کمتری از ضریب همخونی جزئی حاصل از حیوانات حامل ژنهای نامطلوب و یا حیواناتی با بیشترین مشارکت بر پسروی همخونی باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of inbreeding in Karakul sheep breed: Partial inbreeding, Ballou and Kalinowski ancestral inbreeding coefficients

نویسندگان [English]

  • Mohammadreza Sheikhlou 1
  • Saeedeh Sadeghi 2
  • Fateme Bahri Binabaj 3
1 Department of Animal Science - Ahar Faculty of agriculture and natural resources - University of Tabriz
2 MSc graduate, Department of Animal Science, Ahar Faculty of Agriculture &amp; Natural Resources, University of Tabriz
3 Assistant professor, Department of Animal Science, Faculty of Agriculture &amp; Natural Resources, Gonbad Kavoos University
چکیده [English]

Abstract
Background and objectives: Inbreeding is the increase in homozygosity of offspring resulted from mating between related animals or animals that have common ancestors. The main effect of inbreeding is decline in performance of inbred animals known as inbreeding depression. The magnitude of inbreeding depression is not the same across the various traits and population. Recent studies revealed that inbreeding depression also shows variation among founders within a population. Variability of inbreeding depression arises when distribution of deleterious recessive alleles among founders are not equal. Furthermore, the detrimental effects of inbreeding can be reduced if deleterious recessive alleles were removed (purged) by selection against homozygotes in earlier generations. Estimating the partial and ancestral inbreeding coefficients makes it possible to assess the balance of distribution of recessive alleles among founders and incidence of purging of deleterious alleles in population. The objective of this study was to estimate wright inbreeding, partial inbreeding, Ballou ancestral inbreeding and Kalinowski ancestral inbreeding coefficients in the breeding flock of Karakul sheep.
Materials and methods: In this study the pedigree file of the breeding flock of Karakul sheep containing 7477 pedigree records collected during 1989-2014 was used to estimate wright inbreeding, partial inbreeding and ancestral inbreeding coefficients of animals. Pedigree completeness index was calculated to evaluate the quality of pedigree. Animals that born in the last 4 years of the pedigree with pedigree completeness index of greater than 0.6 was considered as a reference population to decomposition of the inbreeding to partial inbreeding arises from founders. Ballou ancestral inbreeding of all animals was estimated. Also, inbreeding coefficients of animals were decomposed to the New and Kalinowski ancestral inbreeding.
Results: The mean of wright inbreeding coefficients of animals in all population and reference population were 0.85 and 1.36, respectively. A total of 108 of 280 founder animals (38%) have a positive contribution to the inbreeding of the reference population. Mean and standard deviation of the partial inbreeding coefficients of these 108 animals were 5.19 and 7.37%, respectively. The 10 and 25 founders contributing the most to inbreeding explained a large part of the inbreeding of the reference population (i.e., 42 and 66%, respectively). Mean Ballou ancestral inbreeding of the whole and reference population were 1.17 and 2.12, respectively. Most of the animals in the population have positive Ballou ancestral inbreeding. Kalinowski ancestral inbreeding of animals was low and its mean was 0.07% in the population. Ancestral inbreeding in this population was in accordance with Ballou definition of ancestral inbreeding. Correlation of wright inbreeding coefficient with Ballou ancestral inbreeding, Kalinowski ancestral inbreeding and New inbreeding coefficients was 0.1, 0.37 and 0.99, respectively.
Conclusion: Based on the results of this study, Ballou ancestral inbreeding coefficients of animals in this flock has increasing trend which can lead to purging of deleterious alleles in this population. Therefore, for assessing the incidence of purging of deleterious alleles in this population, estimating of the effects of ancestral inbreeding on reproductive and production traits are suggested. Also, the estimated partial inbreeding coefficients of animals can be used to determine the contribution of each founder to observed inbreeding depression. On the other hand, estimated partial inbreeding coefficients can help to detect founders that carry the deleterious alleles. Then, these information could be used in mating programs so that new born lambs have a less partial inbreeding arises from carrier animals or those animals which have greater contribution to inbreeding depression.

کلیدواژه‌ها [English]

  • Partial inbreeding coefficients
  • Ancestral inbreeding coefficients
  • Genetic purging
  • Karakul sheep
1.Blanc, F., Martin, G.B. and Bocquier, F. 2001. Modeling reproduction in farm animals: a review. Reproduction, Fertility and Development. 13: 337-353.
2.Clark, L.H., Schlosser, P.M. and Selgrade, J.F. 2003. Multiple stable periodic solutions in a model for hormonal control of the menstrual cycle.Bulletin of Mathematical Biology. 65(1): 157-173.
3.Clément, F., Monniaux, D., Thalabard, J.C. and Claude, D. 2002. Contribution of a mathematical modeling approach to the understanding of the ovarian function. Comptes Rendus Biologies. 325(4): 473-485.
4.Dijkstra, J., Forbes, J.M. and France, J. 2005. Quantitative aspects of ruminant digestion and metabolism.2nd ed. CAB International, Wallingford, UK, 727p.
5.Ellis, J.L., Qiao, F. and Cant, J.P. 2006. Prediction of dry matter intake throughout lactation in a dynamic model of dairy cow performance. Journal of Dairy Science. 89: 1558-1570.
6.France, J. and Kebreab, E. 2008. Mathematical modeling in animal nutrition. CAB International. Wallingford, UK, 588p.
7.Fu, G., Wang, Z., Li, J. and Wu, R. 2011. A mathematical framework for functional mapping of complex phenotypes using delay differential equations. Journal of Theoretical Biology. 289: 206-216.
8.Garnsworthy, P.C., Sinclair, K.D. and Webb, R. 2008. Integration of physiological mechanisms that influence fertility in dairy cows. Animal. 2(8): 144-1152.
9.Heinze. K., Keener, R.W. and Midgley, J.R. 1998. A mathematical model of luteinizing hormone release from ovine pituitary cells in perfusion. Journal of Animal Physiology. 275: 61-71.
10.Ingalls, B. 2012. Mathematical modeling in systems biology: An Introduction.Applied Mathematics book, University of Waterloo. 396p.
11.Kitano, H. 2002. Computational systems biology. Nature. 420: 206-210.
12.Lazebnik, R.S., Weinberg, B.D., Breen, M.S., Lewin, J.S., and Wilson, D.L. 2002.Three-dimensional model of lesion geometry for evaluation of MR-guided thermal ablation therapy. Academic Radiology. 9(10): 1128-1138.
13.Namjo, M., Farhangfar, H., Bashteni, M. and Eghbal, A.R. 2016. Assessment of the impacts of different factors on the
occurrence of negative energy balance in Iranian dairy cows using a logistic generalised linear model. Journal of Ruminant Research. 4(3): 93-116
14.Radcliff, R.P., McCormack, B.L., Crooker, B.A. and Lucy, M.C. 2003. Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows. Journal of Dairy Science. 86: 3920-3926.
15.Reinecke, I. and Deuflhard, P. 2007. A complex mathematical model of the human menstrual cycle. Journal of Theoretical Biology. 247(2): 303-330.
16.Reynolds, C.K., Aikman, P.C., Lupoli, B., Humphries, D.J. and Beever, D.E. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science.86: 1201-1217.
17.Vetharaniam, A.J., Peterson, K.P., McNatty, T.K. and Soboleva, M. 2010. Modelling female reproductive function in farmed animals. Animal Reproduction Science. 122: 164-173.