بررسی تاثیر باکتری‏های تولید کننده و مصرف کننده اسید لاکتیک و ساکارومایسیس سرویسیه بر فراسنجه‏های تولید گاز، تخمیر شکمبه‎ای و قابلیت هضم مواد مغذی در جیره با کنسانتره بالا به روش برون‏ تنی در گوسفند عربی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 دانشگاه رامین

3 Autónoma del Estado de México, Toluca, Edo de México, México

چکیده

سابقه و هدف: اسیدوز یکی از اختلالات تغذیه‏ای در نشخوارکنندگان می‏باشد که به دلیل مصرف مقادیر زیاد کربوهیدرات‏های با قابلیت تخمیر بالا و ظرفیت بافری پایین شکمبه در نتیجه مصرف کم فیبر ایجاد می‏شود. از این رو راهکارهایی از جمله استفاده از افزودنی‏های میکروبی به منظور جلوگیری از بروز اسیدوز پیشنهاد شده است. این تحقیق به منظور بررسی تاثیر استفاده از سه افزودنی خوراکی میکروبی (باکتری‏های تولید کننده و مصرف کننده اسید لاکتیک و مخمر ساکارومایسیس سرویسیه) در جیره با کنسانتره بالا بر فراسنجه‎های تولید گاز و تخمیر شکمبه‏ای در شرایط برون‏تنی در گوسفند و با فرض تاثیر مثبت استفاده هم زمان افزودنی‏ها در مقایسه با کاربرد آن‏ها به تنهایی و تیمار کنترل انجام گرفت.
مواد و روش‏ها: به منظور بررسی تاثیر افزودنی‏های میکروبی بر فراسنجه‎های تولید گاز، تخمیر شکمبه‏ای و قابلیت هضم مواد مغذی به روش برون‏تنی 8 تیمار آزمایشی شامل 1) کنترل (جیره پایه (نسبت کنسانتره به علوفه 70 به 30) بدون افزودنی میکروبی)؛ 2) جیره پایه + مگاسفرا السدنی (Me)؛ 3) جیره پایه + ساکارومایسیس سرویسیه(SC)؛ 4) جیره پایه + لاکتوباسیلوس فرمنتوم+لاکتوباسیلوس پلانتاروم (FP)؛ 5) جیره پایه + مگاسفرا السدنی+ساکارومایسیس سرویسیه (MSC)؛ 6) جیره پایه + مگاسفرا السدنی+لاکتوباسیلوس فرمنتوم+لاکتوباسیلوس پلانتاروم (MFP)؛ 7) جیره پایه + ساکارومایسیس سرویسیه+لاکتوباسیلوس فرمنتوم+لاکتوباسیلوس پلانتاروم (SCFP) و 8) جیره پایه + مگاسفرا السدنی+ساکارومایسیس سرویسیه+لاکتوباسیلوس فرمنتوم+لاکتوباسیلوس پلانتاروم (MSCFP) در قالب آزمایش فاکتوریل مورد بررسی قرار گرفتند. به منظور بررسی اثر بخشی تیمارهای آزمایشی از تکنیک تولید گاز و هضم دو مرحله‏ای در شرایط آزمایشگاهی استفاده شد. مایع شکمبه مورد نیاز از 3 راس گوسفند نر عربی تغذیه شده با جیره بر پایه علوفه گرفته شد.
یافته‏ها: تحت تاثیر استفاده از افزودنی‏های خوراکی میکروبی میزان گاز تولیدی در همه زمان‎ها به طور معنی‏داری برای تیمار MSCFP افزایش یافت (05/0>P). همچنین کم‎ترین میزان متان تولیدی در تیمار MSC مشاهده شد (05/0>P). استفاده از افزودنی‎های خوراکی میکروبی سبب بهبود فراسنجه‎های تولید گاز شد (قابلیت هضم ماده‏آلی و انرژی قابل متابولیسم) (05/0>P). همچنین بیش‎ترین میزان پروتئین میکروبی در تیمار MSC مشاهده شد. قابلیت هضم پروتئین خام و الیاف نامحلول در شوینده اسیدی به طور معنی‎داری در تیمارهای FP و MSCFP افزایش یافت (05/0>P). بیش‏ترین میزان قابلیت هضم الیاف نامحلول در شوینده خنثی در تیمار SCFP مشاهده شد (05/0>P). غلظت کل اسیدهای چرب فرار به طور معنی‏داری برای تیمار MSCFP افزایش یافت (05/0>P). بیش‏ترین درصد اسید چرب استات در تیمار کنترل مشاهده شد (05/0>P) و در مقابل استفاده از افزودنی‏های خوراکی میکروبی سبب افزایش درصد پروپیونات و بوتیرات به ترتیب در تیمارهای MSC و FP شد (05/0>P). همچنین استفاده از افزودنی‏های خوراکی میکروبی سبب کاهش نسبت استات به پروپیونات و همچنین کاهش نسبت استات+بوتیرات به پروپیونات شد (05/0>P). بیش‎ترین غلظت نیتروژن آمونیاکی در تیمارهای MSCFP و SCFP مشاهده شد (05/0>P).
نتیجه‏گیری: با توجه به نتایج مثبت تیمارهای آزمایشی بر تولید گاز، کاهش تولید متان و همچنین قابلیت هضم مواد مغذی، شاید بتوان استفاده از این افزودنی‎های میکروبی را در جیره با کنسانتره بالا در بره پرواری توصیه کرد. از این رو این تیمارها FP، SCFP و MSCFP کاندیدای خوبی برای استفاده هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of lactate producing and utilizing bacterias and Saccharomyces cerevisiae on anaerobic biofermentation and digestibility in Arabi sheep

نویسندگان [English]

  • Ehsan Direkvandi 1
  • Abdelfattah Zeidan Mohamed Salem 3
1 Khuzestan Agricultural Sciences and Natural Resources University
2
3 Autónoma del Estado de México, Toluca, Edo de México, México
چکیده [English]

Background and objectives: Acidosis is a nutritional disorder that is often caused by intake of the high amount of fermentable carbohydrate and an inadequate amount of fiber to induce buffering in the rumen. Hence, a strategy such as the use of microbial additives to prevent acidosis have been suggested. So, this study performed to investigate the effect of using three microbial feed additives (lactate producing and utilizing bacteria and Saccharomyces cerevisiae) in high-concentrate diet on in vitro anaerobic fermentation and digestibility in sheep. Our hypothesis was that the combination of microbial additives compared with individual use and without additives will have a positive effect on in vitro gas production parameters and digestibility in sheep.
Materials and methods: For investigating the effect of microbial additives on the in vitro gas production (GP) parameter, ruminal fermentation and digestibility, 8 treatments were studied based on as factorial experiment based on a completely randomized design; (1) control (basal diet (70% concentrate and 30% forage) without additive; CON); (2) basal diet + Megasphaera elsdenii (Me); (3) basal diet + Saccharomyces cerevisiae (SC); (4) basal diet + Lactobacillus fermentum and Lactobacillus plantarum (FP); (5) basal diet + Me + SC (MSC); (6) basal diet + Me + FP (MFP); (7) basal diet + SC + FP (SCFP) and (8) basal diet + Me + SC + FP (MSCFP). Gas production techniques and two step digestion were used to evaluate the effectiveness of experimental treatments. Ruminal fluid was collected from three adult male Arabi sheep that fed a diet based on forage.
Results: Results showed that use of microbial feed additive improved GP and the highest amount of GP was observed in treatment MSCFP (P

کلیدواژه‌ها [English]

  • Digestibility
  • Fermentation parameter
  • Gas production parameter
  • Microbial additives
  1.  Al Ibrahim, R.M., Kelly, A.K., O’Grady, L., Gath, V.P., McCarney, C. and Mulligan, F.J. 2010. The effect of body condition score at calving and supplementation with Saccharomyces cerevisiae on milk production, metabolic status, and rumen fermentation of dairy cows in early lactation. Journal of Dairy Science. 93: 5318-5328.

    1. 2005 International. Official Methods of Analysis. 18th rev. Assoc. Off. Anal. Chem., Arlington, VA.
    2. Asa, R., Tanaka, A., Uehara, A., Shinzato, I., Toride, Y., Usui, N., Hirakawa, K. and Takahashi, J. 2010. Effects of protease-resistant antimicrobial substances produced by lactic acid bacteria on rumen methanogenesis. Asian-Australasian Journal of Animal Sciences. 23(6): 700–707.
    3. Astuti, W.D., Wiryawan, K.G., Wina, E., Widyastuti, Y., Suharti, S. and Ridwan, R. 2018. Effects of selected Lactobacillus plantarum as probiotic on in vitro ruminal fermentation and microbial population. Pakistan Journal of Nutrition. 17: 131-139.
    4. Beauchemin, K. A., Krehbiel, C. R. and Newbold, C.J. 2006. Enzymes, bacterial directfed microbials and yeast: Principles for use in ruminant nutrition. Pages 251–284 in Biology of nutrition in growing animals. Vol. 4. R. Mosenthin, J. Zentek, and T. Żebrowska, ed. Elsevier Science Health Science Division.
    5. Blümmel, M., Steingaβ, H. and Becker, K. 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15 N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition. 77(6): 911–921.
    6. Broderick, G.A. and Kang, J.H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro Journal of Dairy Science. 63(1): 64-75.
    7. Callaway, E.S. and Martin, S.A., 1997. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of Dairy Science. 80: 2035–2044.
    8. Calsamiglia, S., Blanch, M., Ferret, A. and Moya, D. 2012. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Journal of Animal Feed Science and Technology. 172(1-2): 42-50.
    9. Chen, L., Ren, A., Zhou, C. and Tan, Z. 2017. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian Journal of Animal Science. 216 (1): 52-60.
    10. Drouillard, J.S., Henning, P.H., Meissner, H.H. and Leeuw, K.J. 2012. Megasphaera elsdenii on the performance of steers adapting to a high-concentrate diet, using three or five transition diets. South African Journal of Animal Science. 42(2): 195-199.
    11. Elghandour, M.M., Rodríguez-Ocampo, I., Parra-Garcia, A., Salem, A.Z., Greiner, R., Márquez-Molina, O., Barros-Rodríguez, M. and Barbabosa-Pilego, A. 2018. Biogas production from prickly pear cactus containing diets supplemented with Moringa oleifera leaf extract for a cleaner environmental livestock production. Journal of Cleaner Production. 185: 547–553.
    12. Elghandour, M.M.Y., Vázquez, J.C., Salem, A.Z.M., Kholif, A.E., Cipriano, M.M., Camacho, L.M. and Márquez, O. 2017. In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. Journal of Applied Animal Research. 45: 389-395.
    13. Elghandour, M.M., Chagoyán, J.C.V., Salem, A.Z., Kholif, A.E., Castañeda, J.S.M., Camacho, L.M. and Cerrillo-Soto, M.A. 2014. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Italian Journal of Animal Science. 13(2): 3075.
    14. Ellis, J.L., Bannink, A., Hindrichsen, I. K., Kinley, R.D., Pellikaan, W.F., Milora, N. and Dijkstra, J. 2016. Effect of lactic acid bacteria inoculants on in vitro rumen organic matter digestibility, total gas and methane production. Journal of Animal Feed Science and Technology. 34-9.
    15. Erasmus, L.J., Botha, P.M. and Kistner, A. 1992. Effect of yeast culture supplement on production, rumen fermentation and duodenal nitrogen flow in dairy cows. Journal of Dairy Science. 75: 3056–3065.
    16. Erasmus, L.J., Robinson, P.H., Ahmadi, A., Hinders, R. and Garrett, J.E. 2005. Influence of prepartum and postpartum supplementation of a yeast culture and monensin, or both, on ruminal fermentation and performance of multiparous dairy cows. Journal of Animal Feed Science and Technology. 122: 219 –239.
    17. France, J., Dijkstra, J., Dhanoa, M.S., Lopez, S., and Bannink, A. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition. 83: 143–150.
    18. Fuller, R. 1999. Probiotics for farm animals. In ‘‘Probiotics: A Critical Review’’ (G.W. Tannock, ed.), pp. 15–22. Horizon Scientific Press. Wymondham. UK.
    19. Girard, I.D. and Dawson, K.A. 1995. Stimulatory activities from low-molecular weight fractions derived from Saccharomyces cerevisiae strain 1026. Page 23 in 23rd biennial conference on rumen function. Chicago. Illinois.
    20. Henning, P.H., Horn, C.H., Steyn, D.G., Meissner, H.H. and Hagg, F.M. 2010. The potential of Megasphaera elsdenii isolates to control ruminal acidosis. Journal of Animal Feed Science and Technology. 157(1-2): 13-9.
    21. Hernandez, A., Kholif, A.E., Lugo-Coyote, R., Elghandour, M.M.Y., Cipriano, M., Rodríguez, G.B., Odongo, N.E. and Salem, A.Z.M. 2017. The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. Journal of Cleaner Production. 142: 2384–2392.
    22. Horn, C.H., Kistner, A. and Fouche, G. 2009. Selective enrichment, isolation and characterization of fast-growing acid-tolerant and ionophores-resistant lactate utilisers from rumen contents of animals on high-energy diets. In: Ruminant Physiology – Digestion, Metabolism and Effects of Nutrition on Reproduction and Welfare. 216-217.
    23. Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P., Adesogan, A.T., Yang, W., Lee, C. and Gerber, P.J. 2013. Mitigation of methane and nitrous oxide emissions from animal operations: I.A review of enteric methane mitigation options. Journal of Animal Science. 91: 5045–5069.
    24. Jaramillo-López, E., Itza-Ortiz, M.F., Peraza-Mercado, G. and Carrera-Chávez, J.M. 2017. Ruminal acidosis: strategies for its control. Austral Journal of Veterinary Sciences. 49(3): 139-48.
    25. Kenney, N.M., Vanzant, E.S., Harmon, D.L. and McLeod, K.R. 2015. Effect of direct-fed microbials on utilization of degradable intake protein in receiving steers. Canadian Journal of Animal Science. 95: 93-102.
    26. Kholif, A.E., Elghandour, M.M.Y., Rodríguez, G.B., Olafadehan, O.A. and Salem, A.Z.M. 2017. Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. Journal of Cleaner Production. 142: 2649–2655.
    27. Křížová, L., Richter, M., Třináctý, J., Ríha, J. and Kumprechtová, D. 2011. The effect of feeding live yeast cultures on ruminal pH and redox potential in dry cows as continuously measured by a new wireless device. Czech Journal of Animal Science. 56: 37-45.
    28. Kung Jr. L., and Hession, A. O. 1995. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. Journal of Animal Science. 73: 250–256.
    29. Lettat, A., Nozière, P., Silberberg, M., Morgavi, D. P., Berger, C. and Martin, C. 2012. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiology . 12: 142.
    30. Luo, J., Ranadheera, C. S., King, S., Evans, C. and Baines, S. 2017. In vitro investigation of the effect of dairy propionibacteria on rumen pH, lactic acid and volatile fatty acids. Journal of Integrative Agriculture. 16(7): 1566-75.
    31. Mao, H. L., Mao, H. L., Wang, J. K., Liu, J. X. and Yoon, I. 2013. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. Journal of Animal Science. 91: 3291–3298.
    32. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D. and Morgan, C.A. 2002. Animal Nutrition, 6th ed. Pearson Education Inc. Harlow. UK.
    33. Meissner, H.H., Henning, P.H., Leeuw, K.J., Hagg, F.M., Horn, C. H., Kettunen, A. and Apajalahti, J.H.A. 2014. Efficacy and mode of action of selected non-ionophore antibiotics and direct-fed microbials in relation to Megasphaera elsdenii NCIMB 41125 during in vitro fermentation of an acidosis-causing substrate. Livestock Science. 162: 115–125.
    34. Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science. 93(1): 217–222.
    35. Menke, K.H. and Steingass, H. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development. 28: 7-55.
    36. Moss, A.R., Jouany, J.P. and Newbold, J. 2000. Methane production by ruminants: its contribution to global warming. Annales De Zootechnie. 49: 231–253.
    37. Mulaudzi, T. 2018. In vitro effects of Megasphaera elsdenii ncimb 41125 and Saccharomyces Cerevisiae 1026 on rumen fermentation in early lactating cows. University of South Africa (Master of Science thesis). 30-32.
    38. Newbold, C.J., McIntosh, F.M. and Wallace, R.J. 1998. Changes in the microbial population of a rumen-simulating fermenter in response to yeast culture. Canadian Journal of Animal Science. 7: 241-244.
    39. Nollet, L., Mbanzamihigo, L., Demeyer, D. and Verstraete, W. 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum Journal of Animal Feed Science and Technology. 71 (1-2): 49-66.
    40. 2007. Nutrient Requirments of Dairy Cattel (7th rev. Ed.). The National Academies Press, Washington, DC.
    41. Oba, M. and Wertz-Lutz, A.E. 2011. Ruminant nutrition symposium: Acidosis: New insights into the persistent problem. Journal of Animal Science. 89 (4): 1090-1.
    42. Reich, L.J. and Kung, L.J. 2010. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Journal of Animal Feed Science and Technology. 159: 105-109.
    43. Roger, V., Fonty, G., Komisarczuk-Bony, S. and Gouet, P. 1990. Effects of physicochemical factors on the adhesion to cellulose, avicel of the rumen bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes. Applied and Environmental Microbiology. 56: 3081–3087.
    44. Rooke, J.A. and Hatfield, R.D. 2003. Biochemistry of ensiling. Journal of Animal Science and Technology. 95–139.
    45. Russell, J.B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science. 81: 3222-3230.
    46. Seo J.K., Kim, S.W., Kim, M.H., Upadhaya, S.D., Kam, D.K. and Ha, J. K. 2010. Direct-fed microbials for ruminant animals. Asian-Australasian Journal of Animal Sciences. 12: 1657–1667.
    47. Soriano, A.P., Mamuad, L.L., Kim, S. H., Choi, Y.J., Jeong, C.D., Bae, G.S., Chang, M.B. and Lee, S.S. 2014. Effect of Lactobacillus mucosae on in vitro rumen fermentation characteristics of dried brewers grain, methane production, and bacterial diversity. Asian-Australasian Journal of Animal Sciences. 27(11): 1562-1570.
    48. Statistical Analysis System (SAS). 2008. SAS/STAT 9.2 user’s guide. Cary (NC): SAS Institute Inc.
    49. Tilley J.M.A. and Terry, R.A. 1963. A two stage technique for the in vitro digestion of forage crops. Grass Forage Science. 18(2): 104-111.
    50. Tung, R.S. and Kung, Jr.L. 1993. In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates. Journal of Dairy Science. 76(4): 1083-90.
    51. Van Soest, P.V., Robertson, J.B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74 (10): 3583-3597.
    52. Vyas, D., McGeough, E.J., McGinn, S.
      , McAllister, T.A. and Beauchemin, K.A. 2014. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet. Journal of Animal Science. 92(5): 2192–2201.
    53. Wallace, R.J., McEwan, N.R., McIntosh, F.M., Teferedegne, B. and Newbold, C.J. 2002. Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences. 15. 1458–1468.
    54. Wambui, C.C., Awano, T., Ando, S., Abdulrazak, S.A. and Ichinohe, T. 2010. Effect of yeast supplementation on in vitro ruminal degradability of selected browse species from Kenya. Journal of Food, Agriculture and Environment. 8(2): 553-7.
    55. Weinberg, Z.G., Shatz, O., Chen, Y., Yosef, E., Nikbahat, M., Ben-Ghedalia, D. and Miron, J. 2007. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. Journal of Dairy Science. 90: 4754–4762.
    56. Williams, P.E., Tait, C.A., Innes, G.M. and Newbold, C.J. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science. 69: 3016-3026.
    57. Wolin, M.J. and Miller, T.L. 1988. Microbe-microbe interactions. In: Hobson, P.N. (Ed.), the Rumen Microbial Ecosystem. Elsevier Applied Science Publishers Ltd. Essex. England. UK. 343-360.
    58. Zicarelli, F., Calabro, S., Cutrignelli, M. I., Infascelli, F., Tudisco, R., Bovera, F. and Piccolo, V. 2011. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. Journal of the Science of Food and Agriculture. 91(7): 1213-1221.