Aadil, R. Zeng. M., Ali. X. A., Zeng. A., Farooq. F., Han. M. A., Z., Khalid. S., & Jabbar. S. (2015). Influence of different pulsed electric field strengths on the quality of the grapefruit juice.
International Journal of Food Science and Technology, 50(10): 2290-2296.
http://dx.doi.org/10.1111/ijfs.12891.
Aust.V, Knappstein, K., Kunz. H.J., Kaspar, H., Wallmann, J., Kaske, M. (2019). Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria. Journal of Animal Physiology and Animal Nutrition, 2013; 97 (6):1091–103.
Ayala. A., Mu˜noz. M.F., & Argüelles. S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2- nonenal. Oxidative Medicine and Cellular Longevity, 2014 1–31. https://doi.org/ 10.1155/2014/360438
Boatto. G., Pau. A., Palomba. M., Arenare. L. & Cerri. R. (1999). Monitoring of oxytetracycline in ovine milk by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 1999; 20 (1-2): 321- 6. PubMed PMID: 10704038
Dasan. B.G., Mutlu. M., & Boyaci. I. H. (2016). Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. International Journal of Food Microbiology, 216: 50–59.
Duse, A., Waller, K.P., Emanuelso, U., Unnerstad, H.E., Persson. Y. & Bengtsson. B. (2013). Farming practices in Sweden related to feeding milk and colostrum from cows treated with antimicrobials to dairy calves. Acta Veterinaria Scandinavica, 55: 49–57.
Claeys. W. L., Cardoen. S., Daube. G., De Block. J., Dewettinck. K., Dierick. K., De Zutter. L., Huyghebaert. A., Imberechts. H., Thiange. P., Vandenplas. Y. & Herman, L. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Control, 31(1): 251-262. http://dx.doi.org/10.1016/j.foodcont.2012.09.035.
Coutinho. N.M., Silveira. M.R., Fernandes. L.M., Moraes. J., Pimentel. T.C. & Freitas. M.Q. (2019). Processing chocolate milk drink by low-pressure cold plasma technology. Food Chemistry, 278: 276–283.
Chen. Y., Yile, C. & Jiang, L. (2024). Mechanism of improving the digestibility of coconut globulin by atmospheric cold plasma treatment: the perspective of protein structure. Food Hydrocolloids, 2024-109886.
Fellows. P. J. (2009). Food processing technology: Principles and practice. Elsevier.
Fridman. G., Brooks. A.D., Balasubramanian. M., Fridman. A., Gutsol. A., Vasilets. V.N. & Friedman. G. (2007). Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Processes and Polymers, 4(4): 370–375.
Guo, H., Jiang, N., Wang, H., Lu.N., & Shang, K. (2019). Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway, J. Hazard. Mater, 371 : 666–676.
Jahromi, M., Jahromi, M.X., Golmakani. M.T., Ajalloueian. & Khalesi. F. M. (2020). Effect of dielectric barrier discharge atmospheric cold plasma treatment on structural, thermal and techno-functional characteristics of sodium caseinate. Innovative Food Science & Emerging Technologies, 66: 102542, 133 (2020) 109869, https://doi.org/10.1016 /j.lwt.2020.109869.
Kim, H. J., Yong, H.I., Park, S., Kim. K., Choe, W. & Jo. C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47: 451–456.
Kim, K.-S., Yang, C. S. & Mok, Y.S. (2013). Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chemical Engineering Journal, 219:19–27
Knoerzer. K., Buckow. R., Trujillo. F. J. & Juliano. P. (2015). Multiphysics simulation of innovative food processing technologies. Food Engineering Reviews, 7(2): 64–81.
Liu, F., Sun. P., Bai, N., Tian, Y., Zhou, H. & Wei, S. (2010). Inactivation of bacteria in an aqueous environment by a direct-current, cold-atmospheric-pressure air plasma microjet. Plasma Processes and Polymers, 7(3–4): 231–236.
Ma, Y., Zhang, G. J., Shi, X. M., Xu, G.M. & Yang, Y. (2008). Chemical mechanisms of bacterial inactivation using dielectric barrier discharge plasma in atmospheric air. IEEE Transactions on Plasma Science, 36(4): 1615–1620.
Moore, D.A., Taylor, J., Hartman, M.L. & Sischo, W.M. (2009). Quality assessments of waste milk at a calf ranch. Journal of Dairy Science, 92: 3503–3509. https://doi.org/10.3168/ jds.2008-1623.
Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P. & Cullen. P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235: 324–333. https://doi.org/10.1016/ j. foodchem.2017.05.01
Smet, C., Noriega, E., Rosier, F., Walsh, J. L., Valdramidis, V. P. & Van Impe, J. F. (2016). Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: Impact of osmotic stress, suboptimal pH and food structure. Innovative Food Science & Emerging Technologies, 38: 393–406
Shen. J. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Journal Scientific Reports, 38: 285-55
Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel non-thermal technology for food processing. Food Biophysics, 10(1): 1–11.
Zhang. R., Zhang. W.B., Bi. Y.L., Tu. Y., Beckers. Y., Du. H.C. & Diao. Q.Y. (2019). Early feeding regime of waste milk, milk, and milk replacer for calves has different effects on rumen fermentation and the bacterial community. Animals, https://doi.org/ 10.3390/ani9070443.
Zou, Y., Wang. Y., Deng. Y., Cao. Z., Li. S. & Wang, J. (2017). Effects of feeding untreated, pasteurized and acidified waste milk and bunk tank milk on the performance, serum metabolic profiles, immunity, and intestinal development in Holstein calves. Journal of Animal Science, 8: 53.
Sang.W.,Cui. J., Cui.L., Zhang. Q., Li. Y., Li. D. & Zhang. W. (2019). Degradation of liquid phase N, N-dimethylformamide by dielectric barrier discharge plasma: Mechanism and degradation pathways, Chemosphere, 236 :124401.