The effect of inorganic, organic and nano-zinc sources on growth performance, blood parameters and antioxidant activity of Sanjabi lambs

Authors

1 PhD. Candidate, Dept. of Animal Sciences, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran,

2 Associate Prof., Dept. of Animal Sciences, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran

3 Associate Prof., Aagriculture and Nnatural Rresources Research Centre of Kermanshah Province, Kermanshah, Iran

4 PhD in Animal and Poultry Physiology, University of Guilan, Rasht, Iran

Abstract

Background and objectives: Zinc is one of the most important and essential trace elements that plays a vital role in many biological processes such as the activity of enzymes and hormones, cell membrane stability, gene expression, cell division and antioxidant defense. Therefore, this experiment was performed to compare the effects of supplementation of nano (zinc nano oxide), organic (zinc polysaccharide) and inorganic (zinc sulfate) forms of the trace element zinc on performance, antioxidant status and some blood parameters of growing Sanjabi lambs.
Materials and Methods: This study was performed on 20 male Sanjabi lambs (approximate age 4.5 months and mean weight 29.55 ± 1.1 kg). Treatments include 1) control group (basic diet without zinc supplement), 2) zinc sulfate group, 3) zinc-polysaccharide group 4) zinc nano oxide group. The amount of zinc added in each experimental group was 20 mg / kg dry matter. The diet was given to the lambs freely for 60 days in the morning and evening. In order to evaluate the growth performance, weight loss was performed at the beginning of the experiment and then at 15-day intervals. To determine the amount of dry matter consumed, the amount of feed and its residue were measured daily for each animal. To measure blood parameters and antioxidant status, blood samples were taken in the first days, 30 and 60. Data were analyzed using SAS statistical software version 9.2 using Mixed procedure and Duncan test was used to compare the means at the probability level of 0.05.
Results: The use of zinc supplement in different forms had no effect on the growth performance of lambs (P >0.05). The use of 20 mg zinc per kg of dietary dry matter in different forms caused a significant increase in plasma compared to the control group (P <0.05), but had no significant effect on plasma copper and iron concentrations and serum calcium and phosphorus(P >0.05). The activity of superoxide dismutase increased in the groups supplemented with zinc (P <0.05). Despite the decrease in serum malondialdehyde index in the zinc supplemented groups compared to the control treatment, this difference was significant only in the zinc nano oxide group (P <0.05). The use of different forms of zinc had no effect on the total antioxidant capacity (P >0.05).
Conclusion: The results of this experiment showed that the use of zinc supplement in different forms (inorganic, organic and nano) increases the concentration of zinc in plasma. In addition, it reduces the malondialdehyde index and increases the activity of superoxide dismutase enzyme.

Keywords


  1. Abdollahi, M., Rezaei, J. and Fazaeli, H. 2020. Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Archives of Animal Nutrition, 74(3): 189-205. (In Persian)‌
  2. Aditia, M., Sunarso, C. C. and Angeles, A. 2014. Growth performance and mineral status on goats (Caprahircuslinn.) supplemented with zinc proteinate and selenium yeast. International Journal of Science and Engineering, 7(2): 124-
  3. Aliarabi, H., Fadayifar, A., Tabatabaei, M. M., Zamani, P., Bahari, A., Farahavar, A. and Dezfoulian, A. H. 2015. Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biological Trace Element Research, 168(1): 82-90. ‌(In Persian)
  4. Alimohamady, R., Aliarabi, H., Bruckmaier, R. M. and Christensen, R. G. 2019. Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological Trace Element Research, 189(1): 75-84. (In Persian)
  5. Alloway, B. J. 2008. Zinc in soils and crop nutrition. Second edition, published by IZA and IFA Brussels, Belgium and Paris, France, 102p. ‌
  6. 2000 Association of Official Analytical Chemist. In: Horwitz W (ed) Official methods ofanalysis of AOAC international, 17th edn. AOAC International, Maryland-Gaithersburg, USA.
  7. Attia, A.N., Awadalla, S.A., Esmail, E.Y. and Hady, M.M. 1987. Role of some microelements in nutrition of water buffalo and its relation to production. 2. Effect of zinc supplementation. Assiut Veterinary Medical Journal, 18: 91-100.‌
  8. Bernabucci, U., Ronchi, B., Lacetera, N. and Nardone, A. 2005. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. Journal of Dairy Science, 88(6): 2017-2026.‌
  9. Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M. L. and Benedito, J. L. 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in Veterinary Science, 80(2): 133-139.‌
  10. Dayem, A. A., Choi, H. Y., Kim, J. H. and Cho, S. G. 2010. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers, 2(2): 859-884.‌
  11. Fadayifar, A., Aliarabi, H., Tabatabaei, M. M., Zamani, P., Bahari, A., Malecki, M. and Dezfoulian, A. H. 2012. Improvement in lamb performance on barley based diet supplemented with zinc. Livestock Science, 144(3): 285-289.‌ (In Persian)
  12. Garg, A.K., Mudgal, V. and Dass, R.S. 2008. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144(1-2): 82-96.‌
  13. Gaweł, S., Wardas, M., Niedworok, E. and Wardas, P. 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie (Warsaw, Poland: 1960), 57(9-10): 453-455.‌
  14. Goff, J. P. 2018. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4): 2763-2813.‌
  15. Hosseini-Vardanjani, S.F., Rezaei, J., Karimi-Dehkordi, S. and Rouzbehan, Y. 2020. Effect of feeding nano-ZnO on performance, rumen fermentation, leukocytes, antioxidant capacity, blood serum enzymes and minerals of ewes. Small Ruminant Research, 191: 106170. (In Persian)
  16. Ianni, A., Innosa, D., Martino, C., Grotta, L., Bennato, F. and Martino, G. 2019. Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. Journal of Dairy Science, 102(4): 2918-2927
  17. Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K. and Librowski, T. 2017. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25(1): 11-24.‌
  18. Jia, W., Jia, Z., Zhang, W., Wang, R., Zhang, S. and Zhu, X. 2008. Effects of dietary zinc on performance, nutrient digestibility and plasma zinc status in Cashmere goats. Small Ruminant Research, 80(1-3): 68-72.‌
  19. Jia, W., Zhu, X., Zhang, W., Cheng, J., Guo, C. and Jia, Z. 2009. Effects of source of supplemental zinc on performance, nutrient digestibility and plasma mineral profile in Cashmere goats. Asian-Australasian Journal of Animal Sciences, 22(12): 1648-1653.‌
  20. Ma, F., Wo, Y., Li, H., Chang, M., Wei, J., Zhao, S. and Sun, P. 2020. Effect of the source of zinc on the tissue accumulation of zinc and jejunal mucosal zinc transporter expression in holstein dairy calves. Animals, 10(8):‌
  21. Malakouti, M.J. 2007. Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology, 1(1): 1-12.‌
  22. Malcolm-Callis, K. J., Duff, G. C., Gunter, S. A., Kegley, E. B. and Vermeire, D. A. 2000. Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers. Journal of Animal Science, 78(11): 2801-2808.‌
  23. Mandal, G. P., Dass, R. S., Isore, D. P., Garg, A. K. and Ram, G. C. 2007. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos taurus) bulls. Animal Feed Science and Technology, 138(1): 1-12.‌
  24. Mandal, G.P., Dass, R.S., Garg, A.K., Varshney, V.P. and Mondal, A. B. 2008. Effect of zinc supplementation from inorganic and organic sources on growth and blood biochemical profile in crossbred calves. Journal of Animal and Feed Sciences, 17(2): 147.‌
  25. Mir, S. H., Mani, V., Pal, R.P., Malik, T.A. and Sharma, H. 2020. Zinc in ruminants: metabolism and homeostasis. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(1): 9-19.‌
  26. Nagalakshmi, D., Dhanalakshmi, K. and Himabindu, D. 2009. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Veterinary Research Communications, 33(7): 631-644.‌
  27. 2007. National Research Council nutrient requirements of small ruminants: sheep, goats, Cervids, and New World camelids. National Academy Press, Washington, DC.
  28. Osorio, J. S., Trevisi, E.R. M.I. N.I.O., Ji, P., Drackley, J.K., Luchini, D., Bertoni, G. and Loor, J. J. 2014. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. Journal of Dairy Science, 97(12): 7437-7450.‌
  29. Phiri, E. C. J. H., Viva, M. M., Chibunda, R. T. and Mellau, L. S. B. 2009. Effect of zinc supplementation on plasma mineral concentration in grazing goats in sub-humid climate of Tanzania. Tanzania Veterinary Journal, 26(2): 92-96.‌
  30. Ranasinghe, P., Wathurapatha, W. S., Ishara, M. H., Jayawardana, R., Galappatthy, P., Katulanda, P. and Constantine, G. R. 2015. Effects of Zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutrition & Metabolism, 12(1): 26.‌
  31. Rimbach, G., Walter, A., Most, E. and Pallauf, J. 1998. Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food and Chemical Toxicology, 36(1): 7-12.‌
  32. Salama, A. A., Caja, G., Albanell, E., Such, X., Casals, R. and Plaixats, J. 2003. Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. The Journal of Dairy Research, 70(1): 9.‌
  33. Seifdavati, J., Jahan Ara, M., Seyfzadeh, S., Abdi Benamar, H., Mirzaie Aghjeh Gheshlagh, F., Seyedsharifi, R. and Vahedi, V. 2018. The Effects of Zinc Oxide Nano Particles on Growth Performance and Blood Metabolites and some Serum Enzymes in Holstein Suckling Calves. Iranian Journal of Animal Science Research, 10(1): 23-33. (in Persian)‌
  34. Sekhon, B. S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 7:‌
  35. Sethy, K., Behera, K., Mishra, S. K., Gupta, S. K., Sahoo, N., Parhi, S. S. and Khadanga, S. 2018. Effect of organic zinc supplementation on growth, metabolic profile and antioxidant status of Ganjam sheep. Indian Journal of Animal Research, 52(6): 839-842.‌
  36. Shah, O. S., Baba, A. R., Dar, Z. A., Hussain, T., Amin, U., Jan, A. and Haq, A. U. 2017. Zinc as an element of therapeutic importance: A review. Environment, 29: 30.‌
  37. Sobhanirad, S. and Naserian, A. A. 2012. Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Animal Feed Science and Technology, 177(3-4): 242-246. (In Persian)
  38. Solaiman, S. G. and Min, B. R. 2019. The effect of high levels of dietary zinc on growth performance, carcass characteristics, blood parameters, immune response and tissue minerals in growing Boer-cross goat kids. Small Ruminant Research, 177, 167-174.‌
  39. Spears, J. W., Schlegel, P., Seal, M. C. and Lloyd, K. E. 2004. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 90(2-3): 211-217.‌
  40. Suttle, N. F. 2010. Mineral nutrition of livestock, 4th edn. CABI Publishing, New York.
  41. Swain, P. S., Rao, S. B., Rajendran, D., Dominic, G. and Selvaraju, S. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3): 134-141.‌
  42. Uniyal, S., Garg, A. K., Jadhav, S. E., Chaturvedi, V. K. and Mohanta, R. K. 2017. Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livestock Science, 204: 59-64.‌
  43. Van Soest, P. V., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583-3597.‌
  44. Wang, R. L., Liang, J. G., Lu, L., Zhang, L. Y., Li, S. F. and Luo, X. G. 2013. Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows. Biological Trace Element Research, 152(1): 16-24.‌
  45. Wright, C. L. and Spears, J. W. 2004. Effect of zinc source and dietary level on zinc metabolism in Holstein calves. Journal of Dairy Science, 87(4): 1085-1091.‌
  46. Yagi, K. (1998). Simple assay for the level of total lipid peroxides in serum or plasma. In Free radical and antioxidant protocols(pp. 101-106). Humana Press.‌
  47. Zaboli, K., Aliarabi, H., Bahari, A. A. and Abbasalipourkabir, R. 2013. Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids. (In Persian)
  48. Zalewski, A. and Macphee, C. 2005. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(5): 923-931.‌
  49. Zhao, C. Y., Tan, S. X., Xiao, X. Y., Qiu, X. S., Pan, J. Q. and Tang, Z. X. 2014. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 160(3): 361-367.