1. Adams, A.D. 1976. Powdered activated carbon improves anaerobic digestion water sewage
works. 123(7): 62-63.
2. Banner, R.E., Rogosic, J., Burritt, E.A., and Provenza, F.D. 2000. Supplemental barley and
charcoal increase intake of sagebrush by lambs. J. Range Manage. 53: 415-420.
3. Broderick, G.A., and Kang, J.H. 1980. Automated simultaneous determination of ammonia and
total amino acids in ruminal fluid and in vitro media. J. Dairy. Sci. 63: 64-75.
4. Chen, X.B. 1995. "Fitcurve" macro, IFRU, The Macaulay Institute, Aberdeen, UK.
5. Cheng, K.J., McAllister, T.A., and Costerton, J.W. 1995. Biofilm of the ruminant digestive
tract. Pp: 221-232, In: H.M. Lappin-Scott and J.W. Costerton (eds), Microbial biofilms. The
Cambridge University Press.
6. Chu, G.M., Jung, C.K., Kim, H.Y., Ha, J.H., Kim, J.H., Jung, M.S., Lee, S.J., Song, Y.,
Ibrahim, R.I.H., Cho, J.H., Lee, S.S. and Song, Y.M. 2013. Effects of bamboo charcoal and
bamboo vinegar as antibiotic alternative on growth performance, immune responses and
fecal microflora population in fattening pigs. J. Anim. Sci. 84: 113-120.
7. Cuetos, M.J., Martinez, E.J., Moreno, R., Gonzalez, R., Otero, M., and Gomez, X. 2017.
Enhancing anaerobic digestion of poultry blood using activated carbon. J. Adv. Res.
8. Day, D., Evans, R.J., Lee, J., and Reicosky, D. 2005. Economical CO2, SO4 and NO2 capture
from combined Renewable hydrogen production and large scale carbon sequestration. J.
Energ. 30: 2558-2579.
9. Demeyer, D., DeMeulemeester, M., DeGraeve, K., and Gupta, B.W. 1988. Effect of fungal
treatment on nutritive value of straw.J. Med Fac. Landbouww. Rijksuniv. Gent. 53: 1811–
1819.
10. Downie, A., Crosky, A., and Munroe, P. 2009. Physical properties of biochar. P 1332. In: J.
Lehmann and S. Joseph (eds). Biochar for environmental management: science and
technology. Earthscan: London, UK.
11. Fedorak, P.M., and Hurdy, D.E. 1983. A simple apparatus for measuring gas production by
methanogenic cultures in serum bottles. J. Environ Tech. 4: 425-432.
12. Garillo, E.P., Pradhan, R., and Tobioka, H. 1994. Effects of activated charcoal on ruminal
characteristics and blood profiles in mature goats. J. Anim. Sci. 35: 85-89.
13. Gerlach, H., Gerlach, A., Schrodl, W., Schottdorf, B., Haufe, S., Helm, H., Shehata, A., and
Kruger, M. 2014. Oral application of charcoal and humic acids to dairy cows influences
Clostridium bo- tulinum blood serum antibody level and glyphosate excretion in urine. J.
Clin Toxicol. 4: 186.
14. Hansen, H.H., Storm, I.M.L.D., and Sell, A.M. 2013. Effect of biochar on in vitro rumen
methane production. J. Anim. Sci.. 62(4): 305-309.
15. Johnson, K.A., and Johnson, D.E. 1995. Methane emission from cattle. J. Anim. Sci. 73:
2483-2492.
16. Kajikawa, H., Valdes, C.K., Hillman, K., Wallace, R.J., and Newbold, C.J. 2003. Methane
oxidation and its coupled electron-sink reactions in ruminal fluid. J. Appl Microbiol. 36: 6,
354-357.
17. Keshav, C.D. 2011. Biochars, methods of using biochars, methods of making biochars, and
reactors. US Patent WO/2011/019871.
18. Knittel, K., and Boetius, A. 2009. Anaerobic oxidation of methane: Progress with an
unknown process. J. Annu Rev. Microbiol. 63: 311-344.
19. Kumar, S., Jain, M.C., and Chhonkar, P.K. 1987. A note on stimulation of biogas production
from cattle dung by addition of charcoal. J. Biol. Wastes. 20: 209–215.
20. Lehmann, J. 2007a. A handful of carbon. Nature. 47: 143–144.
21. Lehmann, J. 2007b. Bio-energy in the black. J. Front Ecol. Environ. 5: 381-387.
22. Lehmann, J., and Joseph, S. 2009. Biochar for Environmental Management: Science and
Technology. p 1-12, In: J. Lehmann and S. Joseph (eds), Biochar for Environmental
Management. Science and Technology. London: Earthscan.
23. Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., Coleman, K.,
Woodbury, P., and Krull, E. 2008. Australian climate–carbon cycle feedbackreduced by soil
black carbon. Nat Geosci. 1: 832–835.
24. Leng, R.A. 2014. Interactions between microbial consortia in biofilms: a paradigm shift in
rumen microbial ecology and enteric methane mitigation. J. Anim Prod. Sci. 54: 519-543.
25. Leng, R.A., Inthapanya, S., and Preston, T.R. 2012. Biochar lowers net methane production
from rumen fluid in vitro. Livestock Research for Rural Development. 24: 6.
26. Leng, R.A., Preston, T.R., and Inthapanya, S. 2012. Biochar reduces enteric methane and
improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and
fresh cassava foliage. Livestock Research for Rural Development. 24: 11.
27. Leng, R.A., Preston, T.R., and Inthapanya, S. 2012. Methane production is reduced in an in
vitro incubation when the rumen fluid is taken from cattle that previously received biochar in
their diet. Livestock Research for Rural Development. 24: 211.
28. Leng, R.A., Inthapanya, S., and Preston, T.R. 2013. All biochars are not equal in lowering
methane production in in vitro rumen incubations. Livestock Research for Rural
Development. 25: 106.
29. Liu, F., Rotaru, A., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., and Lovley, D.R. 2012.
Promoting direct interspecies electron transfer with activated carbon. J. Energ Environ. Sci.
5: 8982-8989.
30. Luo, C., Lü, F., Shao, L., and He, P. 2015. Application of eco-compatible biochar in
anaerobic digestion to relieve acid stress and promote the selective colonization of functional
microbes. J. Water Res. 68: 710–718.
31. Mali´nskaa, K., ´Swiatek, M.Z., and Dach, J. 2014. Effects of biochar amendment on
ammonia emission duringcomposting of sewage sludge. J. Ecol. Eng. 71: 474-478.
32. McFarlane, Z.D., Myer, P.R., Cope, E.R., Evans, N.D., Bone, T.C., Biss, B.E., and
Mulliniks, J.T. 2017. Effect of biochar type and size on invitro rumen fermentation of
orchard grass hay. J. Agric. Sci. 8: 316-325.
33. Menke, K.H., and Steingass, H. 1988. Estimation of the energetic feed value obtained from
chemical analysis and in vitro gas production using rumen fluid. J. Anim. Res Dev. 28: 7-55.
34. Mitsumori, M., Ajisaka, N., Tajima, K., Kajikawa, H., and Kurihara, M. 2002. Detection of
Proteobacteria from the rumen by PCR using methanotroph-specific primers. J. Lett Appl.
Microbiol. 35: 3,251-255.
35. Mumme, J., Srocke, F., Heeg, K., and Werner, M. 2014. Use of biochars in anaerobic
digestion. J. Bioresour. Technol. 164: 189-197.
36. Nolan, J.V., and Dobos, R.C. 2005. Nitrogen transactions in ruminants. P 177-206, In: J.
Dijkstra, J.M. Forbes and J. France (eds), Quantitative Aspects of Ruminant Digestion and
Metabolism. CABI Publishing, Walingford, UK.
37. NRC. 2007. Nutrient requirements of small ruminants: Sheep, goats, cervids, and new world
camelids. National Academy Press. 384p.
38. Ogino, A., Orito, H., Shimada, K., and Hirook, H. 2007. Evaluating environmental impacts
of the Japanese beef cow–calf system by the life cycle assessment method. J. Anim. Sci. 78:
424-432.
39. Ørskov, E.R., and McDonald, I. 1979. The estimation of protein degradability in the rumen
from incubation measurements weighted according to rate of passage. J. Agri. Sci. 92: 499-
503.
40. Patra, A.K., and Saxena, J. 2009. Dietary phytochemicals as rumen modifiers: a review of
the effects on microbial populations. J. Microbiol. 96: 363-375.
41. Pereira, C., Muetzel, R., Camps, S., Arbestain, M., Bishop, P., Hina, K., and Hedley, M.
2014 Assessment of the influence of biochar on rumen and silage fermentation: A
laboratory-scale experiment. J. Anim. Feed Sci. Technol. 196: 220-231.
42. Prasai, T.P., Walsh, K.B., Bhattarai, S.P., Midmore, D.J., Van, T.T.H., Moore, R.J., and
Stanley, D. 2016. Biochar, bentonite and zeolite supplemented feeding of layer chickens
alters intestinal microbiota and reduces campylobacter Load. J. PLoS One.11: 4,1-13.
43. Sadasivam, B.Y., and Reddy, K.R. 2015. Adsorption and transport of methane in biochars
derived from wastewood. J. Waste Manage. 1-12.
44. SAS, 2003. SAS User’s Guide Statistics. Version 9.1 Edition. SAS Inst., Cary, NC.
45. Shakeri, P., Aghashahi, A.R., Mostafavi, H., and Mirzaee, M. 2014. Effects of ensilling
Pistachio by-products on ruminal fermentation and methane emission mitigation using
invitro batch fermentation. J. Anim. Sci., (Pajouhesh and sazandegi). 106: 43-54. (In Persian)
46. Silivong, P., and Preston, T.R. 2015. Growth performance of goats was improved when a
basal diet of foliage of Bauhinia acuminata was supplemented with water spinach and
biochar. Livestock Research for Rural Development. 27: 3.
47. Steiner, S., Das, K.C., Melear, N., and Lakly, D. 2010. Reducing nitrogen lossduring poultry
litter composting using biochar. J. Environ Qual. 39: 1236–1242.
48. Stocks, P.K., and McCleskey, C.S. 1964. Morphology and physiology of Methanomonas
methanooxidans. J. Bacteriol. 88: 1071–1077.
49. Toth, J.D., and Dou, Z. 2016. Use and impact of biochar and charcoal in animalproduction
systems. P 199-224, In: M. Guo, Z. He and M. Uchimiya (eds), Agricultural and
Environmental Applications of Biochar: Advances and Barriers, Soil Science Society of
America, Inc., Madison.
50. Van, D.T.T., Nguyen, T.M., and Ledin, I. 2006. Effect of method of processing foliage of
Acacia mangium and inclusion of bamboo charcoal in the diet on performance of growing
goats. J. Anim. Feed Sci. Tech. 130: 242-256.
51. Villalba, J.J., Provenza, F.D., and Banner, R.E. 2002 Influence of macronutrients and
activated charcoal on intake of sagebrush by sheep and goats. J. Anim. Sci. 80: 2099-2109.
52. Yang, X.B., Ying, G.G., Peng, P.A., Wang L., Zhao, J.L., Zhang, L.J., Yuan, P., and He,
H.P. 2010. Influence of biochars on plant uptake and dissipation of two pesticides in an
agricultural soil. J. Agric. Food Chem. 58: 7915-7921.