1.Anderson, S.M., Rudolph, M.C., McManaman, J.L., and Neville, M.C. 2007. Key stages in
mammary gland development. Secretory activation in the mammary gland: it's not just about
milk protein synthesis. Breast. Cancer. Res. 9: 1-7.
2.Bach, I., Rodriguez-Esteban, C., Carrière, C., Bhushan, A., Krones, A., Rose, D.W., Glass,
C.K., Andersen, B., Belmonte, J.C.I., and Rosenfeld, M.G. 1999. RLIM inhibits functional
activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase
complex. Nat. Genet. 22: 394-399.
3.Baghizadeh, A., Bahaaddini, M., Mohamadabadi, M., and Askari, N. 2009. Allelic variations
in exon 2 of Caprine MHC Class II DRB3 Gene in Raeini Cashmere goat. Am-Eurasian J.
Agric. Environ. Sci. 6: 445-454.
4.Bao, Z., Lin, J., Ye, L., Zhang, Q., Chen, J., Yang, Q., and Yu, Q. 2016. Modulation of
Mammary Gland Development and Milk Production by Growth Hormone Expression in GH
Transgenic Goats. Front. Physiol. 7: 74-79.
5.Bar-Sagi, D., Fernandez, A ,.and Feramisco, J.R. 1987. Regulation of membrane turnover
byras proteins. Bioscience. Rep. 7: 427-434.
6.Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 30: 2114-2120.
7.Booth, A.K. and Gutierrez-Hartmann, A. 2015. Signaling pathways regulating pituitary
lactotrope homeostasis and tumorigenesis, in Recent Advances in Prolactin Research.
Springer. p. 37-59.
8.Buitenhuis, B., Poulsen, N.A., Larsen, L.B., and Sehested, J. 2015 .Estimation of genetic
parameters and detection of quantitative trait loci for minerals in Danish Holstein and Danish
Jersey milk. BMC. Genet. 16: 19-25.
9.Fndrews, S., 2010. FastQC: a quality control tool for high throughput sequence data. 175-176.
10.Friedman, R.C., Farh ,K.K.H., Burge, C.B., and Bartel, D.P. 2009. Most mammalian
mRNAs are conserved targets of microRNAs. Genome. Res. 19: 92-105.
11.Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A.,
Khew-Goodall, Y., and Goodall, G.J. 2008. The miR-200 family and miR-205 regulate
epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell. Biol. 10: 593-
601.
12. Gu, Y., Li, M., Wang, T., Liang, Y., Zhong, Z., Wang, X., Zhou, Q., Chen, L., Lang, Q., and
He, Z. 2012. Lactation-related microRNA expression profiles of porcine breast milk
exosomes. PLoS. One. 7: e43691.
13.Hassiotou, F., Twigger, A.-J., Pundavela, J., Roselli, S., Hartmann, P., Geddes, D., and
Hondermarck, H. 2014. Neurotrophin synthesis by mammary cells during lactation (623.19).
FASEB. J. 28: 619-623.
14.Izumi, H., Kosaka, N., Shimizu, T., Sekine, K., Ochiya, T., and Takase, M. 2014. Timedependent
expression profiles of microRNAs and mRNAs in rat milk whey. PLoS. One. 9:
e88843.
15.Jankiewicz, M., Groner, B., and Desrivières, S. 2006. Mammalian target of rapamycin
regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic
acid binding Id1 and their functional differentiation through Id2. Mol. Endocrinol. 20: 2369-
2381.
16. Jiang, N., Wang, Y., Yu, Z., Hu, L., Liu, C., Gao, X., and Zheng, S. 2015. WISP3 (CCN6)
regulates milk protein synthesis and cell growth through mTOR signaling in dairy cow
mammary epithelial cells. DNA Cell. Biol. 34: 524-533.
17. Jiao, B., Ma, H., Shokhirev, M.N., Drung, A., Yang, Q., Shin, J., Lu, S., Byron, M.,
Kalantry, S., and Mercurio, A.M. 2012. Paternal RLIM/Rnf12 is a survival factor for milkproducing
alveolar cells. Cell. 149: 630-641.
18.Katz, E .and Streuli, C.H. 2007. The extracellular matrix as an adhesion checkpoint for
mammary epithelial function. Int. J. Biochem. Cell. Biol. 39: 715-726.
19.Kharrati, K.H., Mohammad, A.M., Ansari, M.S., Esmaili, Z.K.A., Tarang ,A., and
Nikbakhti, M. 2011. Genetic Variation of DGAT1 Gene and its Association with Milk
Production in Iranian Holstein Cattle Breed Population. IJASR. 3: 185-192.
20.Kharrati Koopaei, H., Mohammadabadi, M.R., Ansari Mahyari, S., Esmailizadeh, A.K.,
Tarang, A. and Nikbakhti, M 2012. Effect of DGAT1 variants on milk composition traits in
Iranian Holstein cattle population. Iran. J. Anim. Sci. Res. 3: 185-192. (In Persian).
21.Li, D., Xie, X., Wang, J., Bian, Y., Li, Q., Gao, X., and Wang, C. 2015. MiR-486 regulates
lactation and targets the PTEN gene in cow mammary glands. PloS one. 10: e0118284.
22.Li, Z., Liu, H., Jin, X., Lo, L., and Liu, J. 2012. Expression profiles of microRNAs from
lactating and non-lactating bovine mammary glands and identification of miRNA related to
lactation. BMC Genomics. 3: 12-22.
23.Lin, X.Z., Luo, J., Zhang, L.P., Wang, W., Shi, H.B., and Zhu, J.J. 2013. MiR-27a
suppresses triglyceride accumulation and affects gene mRNA expression associated with fat
metabolism in dairy goat mammary gland epithelial cells. Gene. 521: 15-23.
24.Melnik, B.C., John, S.M., Carrera-Bastos, P., and Cordain, L. 2012. The impact of cow's
milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr.
Metab. 9: 21-32.
25.Moghadaszadeh, M., Mohammadabadi, M.R., and Esmailizadeh, A.K. 2015. Association of
Exon 2 of BMP15 Gene with the Litter Size in the Raini Cashmere Goat. G3M. 13: 4062-
4067.
26.Naeem, A., Zhong, K., Moisá, S., Drackley, J., Moyes, K., and Loor, J. 2012. Bioinformatics
analysis of microRNA and putative target genes in bovine mammary tissue infected with
Streptococcus uberis. J. Dairy. Sci. 95: 6397-6408.
27.O'Connell, R.M., Rao, D.S., Chaudhuri, A.A., and Baltimore, D. 2010. Physiological and
pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10: 111-122.
28.Oliver, C.H. and Watson, C.J. 2013. Making milk: A new link between STAT5 and Akt1.
JAK-STAT. 2: 2154-2168.
29.Ortega-Molina, A. and Serrano, M. 2013. PTEN in cancer, metabolism, and aging. Trends
Endocrinol. Metab. 24: 184-189.
30.Osipovich, A.B., Gangula, R., Vianna, P.G., and Magnuson, M.A. 2016. Setd5 is essential
for mammalian development and co-transcriptional regulation of histone acetylation.
Development. 14: 146-155.
31.Poissonnier, L., Villain ,G., Soncin, F., and Mattot, V. 2014. miR126-5p repression of
ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and transmigration.
Cardiovasc. Res. cvu040.
32.Raven, L.A., Cocks, B.G., Goddard, M.E., Pryce, J.E., and Hayes, B.J. .2014. Genetic
variants in mammary development, prolactin signalling and involution pathways explain
considerable variation in bovine milk production and milk composition. Genet. Select. Evol.
46: 110-117.
33.Shamsalddini, S., Mohammadabadi, M.R., and Esmailizadeh, A.K. 2016. Polymorphism of
the prolactin gene and its effect on fiber traits in goat. Russ. J. Genet. 52: 405-408.
34.Takahashi, R.U., Miyazaki, H., and Ochiya, T. 2015. The roles of microRNAs in breast
cancer. Cancers. 7: 598-616.
35.Tanaka, T., Haneda, S., Imakawa, K., Sakai, S., and Nagaoka, K. 2009. A microRNA, miR-
101a, controls mammary gland development by regulating cyclooxygenase-2 expression.
Differentiation. 77: 181-187.
36.Ucar, A., Vafaizadeh, V., Jarry, H., Fiedler, J., Klemmt, P.A., Thum, T., Groner, B., and
Chowdhury, K. 2010. miR-212 and miR-132 are required for epithelial stromal interactions
necessary for mouse mammary gland development. Nat. Genet. 42: 1101-1108.
37.Urbich, C., Kuehbacher, A., and Dimmeler, S. 2008. Role of microRNAs in vascular
diseases, inflammation and angiogenesis. Cardiovas. Res. 4: 581-588.
38.Wang, C., Long, K., Jin, L., Huang, S., Li, D., Ma, X., Wei, M., Gu, Y., Ma, J., and Zhang,
H. 2015. Identification of conserved microRNAs in peripheral blood from giant panda:
expression of mammary gland-related microRNAs during late pregnancy and early lactation.
Genet. Mol. Res. 14: 14216-14228.
39.Warnefors, M., Liechti, A., Halbert, J., Valloton, D., and Kaessmann, H. 2014. Conserved
microRNA editing in mammalian evolution, development and disease. Genome Biol. 15: 1.
40.Yang, H., Kong, W., He, L., Zhao, J.J., O'Donnell, J.D., Wang, J., Wenham, R.M., Coppola,
D., Kruk, P.A., and Nicosia, S.V. 2008. MicroRNA expression profiling in human ovarian
cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer
Res. 68: 425-433.
41.Zhang, C., Zhao, Y., Wang, Y., Wu, H., Fang, X., and Chen, H. 2014. Deep RNA sequencing
reveals that microRNAs play a key role in lactation in rats. J. Nutr. 144: 1142-1149.
42.Zhao, Y., Wang, P., Meng, J., Ji, Y., Xu, D., Chen, T., Fan, R., Yu, X., Yao, J., and Dong, C.
2015. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting
Wnt3a. Int. J. Mol. Sci. 16: 10921-10933.