Study the parameters related to replacement percentage and revenue obtained by maintenance of dairy cows through production system optimization


1. Allaire, F.R., and Gibson, J.P. 1992. Genetic value of herd life adjusted for milk production. J. Diary Sci. 75: 1349-1356.
2. Bertsekas, D.P. 2001. Dynamic Programming and Optimal Control. Vol. 2: Dynamic Programming. 2nd ed. Athe. Sci., Belmont, MA.
3. Boettcher, P.J., Jairath, L.K., and Dekkers, J.C.M. 1999. Comparison of Methods for Genetic Evaluation of Sires for Survival of Their Daughters in the First Three Lactations. J. Dairy Sci. 82: 1034-1044.
4. Cardoso, V.L., Nogueria, J.R., and VanArendonk, J. 1999. Optimal Replacement and Insemination Policies for Holstein Cattle in the Southeastern Region of Brazil The Effect of Selling Animals for Production. J. Dairy Sci. 82: 1449–1458.
5. De Varies, A. 2006b. Ranking dairy cows for future profitability and culling decisions. Proceeding 3th Florida and Georgia Dairy Road Show.
6. Hadley, G.L., Wolf, C.A., and Harsh, S.B. 2006. Dairy cattle culling patterns, explanations, and implications. J. Dairy Sci. 89: 2286–2296.
7. Heikkila, A.M. 2008. Optimal replacement policy and economic value of dairy cows with diverse health status and production capacity. J. Dairy Sci. 91: 2342-2352.
8. Howard, R.A. 1960. Dynamic Programming and Markov Processes. John Wiley and Sons, New York, NY.
9. Kalantari, A.S.Y. 2010. Determining the optimum replacement policy for Holstein dairy herds in Iran. J. Dairy Sci. 93: 2262-2270.
10. Kristensen, A.R. 1988. Hierarchic Markov processes and their applications in replacement models. Eur. J. Oper. Res. 35: 207-215.
11. Ljungqvist, L., and Sargent, T.J. 2000. Recursive Macroeconomic Theory. MIT Press, Cambridge, MA.
12. Matlab, 2005. User manual statistics toolbox. The mathworks.
13. McCullough, D.A., and Delorenzo, M.A. 1996. Effect of price and management level on optimal replacement and insemination decision. J. Dairy Sci.79: 242-253.
14. Miranda, M.J., and Fackler, P.L. 2002. Applied Computational Economics and Finance. MIT Press, Cambridge, MA.
15. SAS Institute. 2001. SAS users guide Statistics. Version 9.12 SAS Institute Inc., Cary North Carolina.
16. SeyedSharifi, R., Nourmohammadi, S., Hedayat Evarigh, N., and Savar Sofla, S. 2016. Determining the most appropriate age of replacement for dairy cows in Ardabil Province using Stochastic dynamic programming. J. Rumin. Res. 4 (1): 113-130. (In Persian)
17. Stewart, H.M., Burnside, E.B., Wilton, J.W., and Pfeiffer, W.C. 1977. A dynamic programming approach to culling decisions incommercial dairy herds. J. Dairy Sci. 60: 602-617.
18. Van Arendonk, J.A.M. 1985. A model to estimate the performance,revenus and costs of dairy cows under different production and price situations. J. Agri. Syst. 16: 157-189.
19. Vukasinovic, N., Moll, J., and Casanova, L. 2001. Implementation of a routine genetic evaluation for longevity based on survival analysis techniques in dairy cattle populations in Switzerland. J. Dairy Sci. 84: 2073-2080.
20.Weigel, D.J., Cassell, B.G., Hoeschele, I., and Pearson, R.E. 1995. Multiple-trait prediction of transmitting abilities for herd life and estimation of economic weights using net income adjusted for opportunity cost. J. Dairy Sci. 78: 639–647.