بررسی اثرمکملهای مختلف مس برعملکرد، برخی فراسنجه های خون و پاسخ ایمنی همورال دربره‌های نرسنجابی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه علوم دامی ، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه ، ایران

چکیده

سابقه و هدف: مس از عناصر کم‌مصرف می باشد که در بسیاری از فرآیندهای مهم بدن حضور دارد و نقش حیاتی ایفا میکند. کمبود مس در برخی نواحی جهان یک مشکل عمده در نشخوارکنندگان محسوب میشود. به همین منظور در تنظیم جیره غذایی گوسفند برای جبران کمبود مس معمولاً از مکمل‌های تغذیه‌ای استفاده می‌شود. بنابراین، پژوهش حاضر به منظور ارزیابی اثر دو فرم مکمل مس بر عملکرد، برخی فراسنجه‌های خونی و صفات لاشه بره‌های نر سنجابی طراحی شد.
مواد و روش‌ها: تعداد 15 راس بره نر (38/3±04/26 کیلوگرم؛ 3 -4 ماهه) در سه گروه پنج راسی در قالب طرح کاملاً تصادفی در جایگاه انفرادی به مدت 90 روز نگهداری شدند. تیمارها شامل جیره پایه (شاهد، محتوی 6/5 میلی گرم در کیلوگرم مس) بدون مکمل مس، جیره پایه+15 میلی‌گرم مس- لایزین در کیلوگرم ماده خشک و جیره پایه+ 15 میلی گرم نانومس در کیلوگرم ماده خشک بودند. مکمل‌ها روزانه به همراه جیره پایه در اختیار بره‌ها قرار گرفت. در روزهای صفر،60،30 و90 آزمایش از ورید وداج بره ها خونگیری به عمل آمد و میزان مس و روی پلاسما، میزان سرولوپلاسمین سرم، فعالیت آنزیم سوپراکسیددیسموتاز، ظرفیت آنتی‌اکسیدانی تام، شاخص مالون دی آلدهید، شمارش تفریقی گلبول های سفید خون و هماتوکریت تعیین گردید. در پایان آزمایش، تعداد 3 راس بره از هر گروه به روش استاندارد ذبح گردید و از بافت های چهارسر ران، کبد، کلیه و طحال برای اندازه گیری میزان مس، نمونه برداری شد و برخی صفات لاشه مورد بررسی قرار گرفت.
یافته‌ها: استفاده از مکمل مس در فرم‌های مختلف تاثیری بر عملکرد رشد بره ها نداشت. استفاده از مکمل مس تاثیری بر فعالیت آنزیم سوپراکسیددیسموتاز و ظرفیت آنتی اکسیدانی کل نداشت ولی شاخص مالون‌دی‌آلدئید سرم خون در مقایسه با گروه شاهد کمتر بود (05/0>P). درصد هماتوکریت دربره‌های تغذیه شده با جیره حاوی مکمل مس نسبت به گروه شاهد تفاوت معنی داری نداشت ( 05/0<P) ولی درصد لنفوسیت در بره‌های دریافت‌کننده مس آلی و درصد نوتروفیل در بره‌های گروه مس نانو کمترین بود (05/0>P). افزودن مکمل مس-لیزین به جیره غلظت مس پلاسما را نسبت به گروه های شاهد و مکمل نانو مس افزایش داد (01/0>P) و غلظت روی پلاسما روند کاهشی داشت (05/0<P). همچنین مکمل نمودن جیره با مس تاثیر معنی‌داری بر غلظت سرولوپلاسمین نداشت. میزان ذخیره عنصر مس در بافت‌های کبد و طحال گروه‌های دریافت‌کننده مکمل مس نسبت به گروه شاهد بیشتر بود (05/0>P).
نتیجه‌گیری: در مجموع نتایج نشان داد که استفاده از مکمل مس به فرم‌های آلی یا نانو تاثیر معنی‌داری بر عملکرد رشد بره‌ها نداشت. علاوه براین وضعیت آنتی اکسیدانی و سیستم همورال بره ها نیز تحت تاثیر قرار نگرفت هرچند سبب بهبود شاخص مالون‌دی‌آلدئید سرم خون شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the various copper supplements effect on performance, some blood parameters and humoral immune response of male Sanjabi lambs

نویسندگان [English]

  • Fardin hozhabri 1
  • Mahin Darabi 2
  • Mohammad Mehdi Moeini 1
1 Animal Science Department, Agriculture Faculty, Razi University, Kermanshah, Iran
2 animal Science Department, Agriculture Faculty, Razi University, Kermanshah, Iran
چکیده [English]

Background and objectives: Copper is a microelement that is present in many important processes in the body and plays a vital role. Copper deficiency in some parts of the world is a major problem in ruminants.
For this reason, dietary supplements are commonly used to regulate the diet of sheep to compensate for copper deficiency. Therefore, this study was carried out to evaluate the effects of two forms of copper supplement on performance, some blood parameters and carcass traits of male Sanjabi lambs.

Materials and methods:
A total of 15 male lambs (26.04±3.38 Kg, 3-4 months) in three groups of five placed in individual pens for a period of 90 days using completely randomized design. The treatments included: (1) basal diet (containing 5.6 mg Cu/kg DM; control) without supplementary Cu, (2) basal diet + 15 mg/kg DM Cu- Lys and (3) basal diet + 15 mg/kg DM Nano-Cu. Supplements on a daily basis, were allocated to the lambs along with basal diet. On days zero, 60, 30 and 90 blood samples were taken from jugular vein and the concentration of plasma Cu and Zn, serum ceruloplasmin level, superoxide dismutase enzyme activity (SOD), total antioxidant capacity (TAC), malondialdehyde index (MDA), differential count of white blood cells and hematocrit was determined. In the end of experiment, three lambs were slaughtered from each group using standard method. Quadriceps tissue, liver, kidney and spleen samples were taken to measure the amount of Cu and some carcass traits were measured.

Results:
The use of Cu supplement in various forms had no effect on growth performance of lambs. Copper supplementation had no effect on SOD and TAC, but the MDA index of blood serum was lower compared to the control (P<0.05). Hematocrit in lambs fed diets containing Cu supplements were not significantly different than the control but the percentage of lymphocyte in lambs received organic Cu and neutrophil percentage in lambs of Nano Cu group were lowest (P<0.05). Addition of Cu-Lys to the diet increased plasma Cu concentration compared to control and Nano-Cu groups (P<0.01) and plasma Zn concentration tended to decrease (P>0.05). Also, supplementation of diet with Cu had no effect on ceruloplasmin concentration, significantly. The amount of copper deposited in liver and spleen tissues of Cu supplemented groups were higher than those of the control (P<0.05).

Conclusion:
In general, the results showed that the use of Cu supplement in the form of organic or Nano did not influence growth performance. In addition to that antioxidant status and humoral systems of lambs were not affected, however, malondialdehyde index was improved.

کلیدواژه‌ها [English]

  • Antioxidant
  • ceruloplasmin
  • Nano copper
  • organic copper
1. Aliarabi, H., Tabatabaee, M.M., Fadayifar, A., Torkashvan, S., Bahari, A.A., Zamani, P.,
Alipour, D., and Dezfoulian, A.H. 2011. The effect of addition of organic zinc
supplementation with and or without Cu on performance plasma minerals profile and some
enzyme activity in male Mehraban lambs. Journal of Animal Science Researches. 21: 111-
121. (In Persian)
2. Allan, J.I., Kay, N.E., and McClain, C.J. 1981. Severe zinc deficiency in humans, associate
with reversible T lymphocyte dysfunction. Annals Internal Medicine. 95: 154-157.
3. AOAC. 1990. Official Methods of Analysis, 15th Edition. Association of Official
Analytical Chemists, Washington. D.C.
4. Bahari, A. 2012. The effect of level and kind of Cu supplementation on haematology
parameters, ceruloplasmin and plasma concentration of Cu, Zn and Fe in male Mehraban
lambs. Iranian Journal of Animal Science. 43: 161-174. (In Persian)
5. Blakley, B.R., and Hamilton, D.L. 1985. Ceruloplasmin as an indicator of copper status in
cattle and sheep. Canadian Journal of Comparative Medicine. 49: 405-408.
6. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181:
1199 – 1200.
7. Dezfoulian, A.H, Aliarabi, H., Tabatabaei, M.M., Zamani, P., Alipour, D., Bahari, A., and
Fadayifar, A. 2012. Influence of different levels and sources of copper supplementation on
performance some blood parameters, nutrient digestibility and mineral balance in lambs.
Journal of Livestock Science. 147: 9–19.
8. Eckert, G.E., Greene, L.W., Carstens, G.E., and Ramsey, W.S. 1999. Copper status of ewes
fed increasing amounts of copper from copper sulfate or copper proteinate. Journal of
Animal Science. 77: 244-249.
9. Egbe-Nwiyi, T.N, Nwaosu, S.C., and Salami, H.A. 2000. Haematological values of
apparently healthy sheep and goats as influenced by age and sex in arid zone of Nigeria.
African Journal of Biomedical Research. 3: 109 –115.
10. Engle, T.E., and Spears, J.W. 2000. Effects of dietary copper concentration and source on
performance and copper status of growing and finishing steers. Journal of Animal Science.
78: 2446-2451.
11. Fenger, C.K., Hoffsis, G.F., and Kociba, G.J. 1992. Idiopathic immune-mediated hemolytic
anemia in a calf. Journal of the American Veterinary Medical Association. 201: 97-99.
12. Gartner, R.J.W., Callow, L.L., Granzien, C.K., and Pepper, P.M. 1969. The concentration of
blood constituents in relation to handling of cattle. Research Veterinary Science. 10: 7-12.
13. Ghiselli, A., Serafini, M., Natella, F., and Scaccini, C. 2000. Total antioxidant capacity as a
tool to assess redox status: critical view and experimental data. Journal of Free Radical
Biology and Medicine. 29: 1106–1114.
14. Glass, G.A., and Gershon, D. 1984. Decreased enzymic protection and increased sensitivity
to oxidative damage in erythrocytes as a function of cell and donor aging. Biochemistry
Journal. 218: 531–537.
15. Gonzales-Eguia, A., Chao-Ming, F., Fu-Yin, L., and Tu-Fa, L. 2009. Effects of Nano-copper
on copper availability and nutrients digestibility, growth performance and serum traits of
piglets. Journal of Livestock Science. 126: 122-129.
16. Harmon, R.J. 2000. When chelated minerals are justified Kentucky Ruminant Nutrition, Pp:
47-54.
17. Hatfield, P.G., Swenson, C.K., Kott, R.W., Ansotegui, R.P., Roth, N.J., and Robinson, B.L.
2001. Zinc and copper status in ewes supplemented with sulfate- and amino acid-complexed
forms of zinc and copper. Journal of Animal Sciences. 79: 261.266.
18. Holvet, P. 2008. Relationship between metabolic syndrome, oxidative stress and
inflammation and cardiovascular disease. Verhandelingen- Koninklijke Academie voor
Geneeskunde van Belgie. 70: 193-219.
19. HosianPour, N., Nourozian, M.A., and Afzalzadeh, A. 2014. The effect of different sources
of Cu on gas production parameters and nutrient digestibility in Zandi sheep. Journal of
Animal Production. 16: 93-101. (In Persian)
20. Jain, N.C. 2000. Schalm’s Veterinary Hematology. 5th edition, Philadelphia, Lippincott
Williams & Wilkins. 1075-1084.
21. Kincaid, R.L., and Rock, M.J. 1999. Selenium intakes during late gestation on
immunoglobulins and thyroid hormones in sheep. FASEB Journal. 13: 42-49.
22. Leach, R.M., Rosenblum, C.I., Amman, M.J., and Burdette, J. 1990. Broiler chickens fed
low-calcium diets increased sensitivity to copper toxicity. Journal of Poultry Science. 69:
1905-1910.
23. Lim, H.S., and Paik, I.K. 2006. Effects of dietary supplementation of copper chelates in the
form of methionine, chitosan and yeast in laying hens. Asian-Australian Journal of Animal
Science. 19: 1174-1178.
24. Lopez, A., M., Benedito, J.L, Miranda, M, Castillo, C., Hernandez, J., and Shore, R.F. 2002.
Contribution of cattle products to dietary intake of trace and toxic elements in Galicia, Spain.
Food Additives Contaminants. 19: 533-541.
25. Luginbuhl, J.M., Poore, M.H., Spears, J.W., and Brown, T.T. 2000. Effect of dietary copper
level on performance and copper status of growing meat goats. Sheep and Goat Research
Journal. 16: 65-71.
26. Miller, N.J., and Rice-Evans C. 1997. Factors influencing the antioxidant activity determined
by the ABTS·+ radical cation assay. Free Radical Research. 26: 195-199.
27. Mohri, M., Jannatabadi, A.A., and Aslani, M.R. 2005. Studies on haemoglobin
polymorphism of two breeds of Iranian sheep and its relationship to concentrations of iron,
copper, haemoglobin, and RBC number. Veterinary Research Communications. 29: 305-312.
28. Naudi, A., Jove, M., Ayala, V., Cassanye, A., Serrano, J., Gonzalo, H., Boada, J., Prat, J.,
Portero-Otin, M., and Pamplona, R. 2012. Cellular dysfunction in diabetes as maladaptive
response to mitochondrial oxidative stress. Experimental Diabetes Research. 20: 1-14.
29. Nikbakht Brojeni, G.R., and Talebi, M.A. 2000. Determination of hematological values Lori
Bakhtiari sheep. Journal of Veterinary Research. 55: 2-9 (In Persian)
30. NRC. 2007. Nutrient Requirements of Small Ruminants Sheep, Goats, Cervids, and new
world camelids. National Academy Press, Washington, D.C.
31. Pal, D.T., Gowda, N.K.S., Prasad, C.S., Amarnath, R., Bharadwaj, U., SureshBabu, G., and
Sampath, K.T. 2010. Effect of copper and zinc-methionine supplementation on
bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. Journal
of Trace Elements in Medicine and Biology. 24: 89-94.
32. Panivivat, R., Kegley, E.B., Penington, J.A., Kellogg, D.W., and Krumpelman, S.L. 2004.
Growth performance and health of dairy calves bedded with different types of materials.
Journal of Dairy Science. 87: 3736 – 3745.
33. Placer, Z.A., Cushman, L.L., and Johnson, B.C. 1966. Estimation of product of lipid
peroxidation (malondialdehyde) in biochemical systems. Annual Biochemistry. 16: 359-364.
34. Ramos, A., Cabrera, M.C., and Saadoun, A. 2012. Bioaccessibility of Se, Cu, Zn, Mn and
Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed
pasture. Meat Science. 91: 116-124.
35. Rosenfeldt, F., Wilson, M., Lee, G., Kure, C., Ou, R., Braun, L., and de Haan, J. 2013.
Oxidative stress in surgery in an ageing population: pathophysiology and therapy.
Experimental Gerontology. 48: 45-54.
36. Rothenbacher, H., and Sherman, A.R. 1980. Target organ pathology in iron-deficient
suckling rats. Journal of Nutrition. 110: 1648-1654.
37. Sansinanea, A.S., Silvia, I., Cerone, DVM., Quiroga, M., and Auza, N. 1993.Antioxidant
capacity of erythrocytes from sheep chronically poisoned by copper. Nutrition Research. 13:
891-899.
38. SAS. 2004. User’s Guide: Statistics, Version 9.2. SAS Institute, Inc., Cary, NC.
39. Schalm, O.W., Jain, N.C., and Carroll, E.J. 1975. Veterinary Hematology. 3rd ed.,
Philadelphia. 487-556.
40. Senthilkumar, P., Nagalakshmi, D., Ramana Reddy, Y., and Sudhakar, K. 2009. Effect of
different level and source of copper supplementation on immune response and copper
dependent enzyme activity in lambs. Journal of Trophy Animal Health Production. 41: 645-
653.
41. Solaiman, S.G., Maloney, M.A., Qureshi, M.A., Davis, G., and D’Andrea, G. 2001. Effects
of high copper supplements on performance, health, plasma copper and enzymes in goats.
Journal of Small Ruminant Research. 41: 127-139.
42. Solaiman, S.G., Shoemaker, C.E., and D’Andrea, G.H. 2006. The effect of high dietary Cu
on health, growth performance, and Cu status in young goats. Journal of Small Ruminant
Research. 66: 85-91.
43. Spears, J.W. 1996. Organic trace minerals in ruminant nutrition. Journal of Animal Feed
Science and Technology. 5: 151–163.
44. Spears, J.W. 2003. Trace mineral bioavailability in ruminants. Journal of Nutrition. 133:
1506–1509.
45. Suttle, N.F. 1994. Meeting the copper requirements of ruminants. P 173–188, In: P.C.
Garnsworthy and D.J.A. Cole (eds), Recent Advances in Animal Nutrition. Nottingham
University Press, Nottingham.
46. Underwood, E.J., and Suttle, N.F. 1999. The mineral nutrition of livestock. 3rd edition.
CABI Publishing Company. New York. 283-3423.
47. Videla, L.A., Rodrigo, R., Orellana, M., Fernandez, V., Tapia, G., Quinones, L., Varela, N.,
Contreras, J., Lazarte, R., Csendes, A., Rojas, J., Maluenda, F., Burdiles, P., Diaz, J.C.,
Smok, G., Thielemann, L., and Poniachik, J. 2004. Oxidative stress–related parameters in the
liver of non-alcoholic fatty liver disease patients. Clinical Science. 106: 261-268.
48. Widlansky, M.E., and Gutterman, D.D. 2011. Regulation of endothelial function by
mitochondrial reactive oxygen species. Antioxidant Redox Signal. 15: 1517–30.
49. Zhang, W., Wang, R., Kleemann, D.O., Lu, D., Zhu, X., Zhang, C., and Jia, Z. 2008. Effects
of dietary copper on nutrient digestibility, growth performance and plasma copper status in
Cashmere goats. Journal of Small Ruminant Research. 74: 188-193.