اثر اسیدهای چرب پالمیتیک و استئاریک و آلفا-لینولنیک بر مصرف خوراک، تولید و ترکیبات شیر گاوهای تازه‌زای هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای تغذیه دام دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران

4 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

5 پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

سابقه و هدف: مکمل‌های چربی بی اثر بر فعالیت شکمبه، به‌دلیل محتوای بالای انرژی و تطبیق‌پذیری آن در مزارع پرورش گاوشیری، به یک جزء رایج اقلام تشکیل دهنده جیره تبدیل شده‌اند. چربیآن‌ها معمولاً حاوی غلظت‌های بالایی از اسیدهای چرب زنجیر بلند شامل پالمیتیک، استئاریک، اولئیک و لینولئیک می‌باشند. تحقیقات چند سال گذشته نشان داده است که اسیدچرب تنها یک منبع انرژی نیست، بلکه کاربردهای مختلف متابولیکی در بدن گاو داشته و از راه‌های مختلفی در تولید آن‌ها شرکت می‌کند. در این پژوهش اثرات دو اسید چرب اشباع پالمیتیک و استئاریک که بیشترین مقدار مکمل‌های چربی را شامل می‌شوند، در حضور و عدم حضور امگا-3 بررسی شد.
مواد و روش‌ها: 32 راس گاو شیری با بیش از دو شکم زایش، بلافاصله پس از زایش، وارد طرح آزمایشی در قالب بلوک‌های کامل تصادفی با 4 تیمار (فاکتوریل 2×2) شده و به‌مدت 65 روز در جایگاه‌های انفرادی نگهداری شدند و تولید و ترکیبات شیر هر یک از آنها اندازه‌گیری شد. تیمارهای آزمایشی شامل 1) جیره پایه با 5/1 درصد مکمل غنی از اسید استئاریک (75 درصد)، 2) جیره پایه با 5/1 درصد مکمل غنی از اسید استئاریک (75 درصد) با مکمل امگا-3، 3) جیره پایه با 5/1 درصد مکمل غنی از اسید پالمیتیک (75 درصد) و 4) جیره پایه با 5/1 درصد مکمل غنی از اسید پالمیتیک (75 درصد) با مکمل امگا-3 بودند.
یافته‌ها: اثر متقابل اسیدچرب اشباع با امگا-3 بر تولید شیر معنی‌دار بود (01/0≥P). گاوهایی که با تیمار اسید پالمیتیک همراه با امگا-3، تغذیه شدند، بیشترین مقدار شیر را تولید کردند (92/50 کیلوگرم) اما سایر تیمارها اختلافی با یکدیگر نداشتند (01/0≤P). اثر نوع اسیدچرب اشباع بر تولید شیر تصحیح شده بر اساس 5/3 درصد چربی و شیر تصحیح شده بر اساس انرژی، معنی‌دار نبود (05/0≤P) اما اثر امگا- 3 به ترتیب در سطح 1 و 5 درصد معنی‌دار بود . مصرف ماده خشک گاوهایی که با اسید استئاریک بدون امگا-3 تغذیه شدند (70/24 کیلوگرم)، بیشتر از سایر تیمارها بود (05/0≥P). اما تفاوت معنی‌داری بین سه تیمار آزمایشی دیگر وجود نداشت (05/0≤P). در بررسی ترکیبات شیر، درصد چربی و کل چربی شیر تولیدی، اثر متقابل اسیدچرب اشباع با امگا-3 و همچنین اثر نوع اسیدچرب اشباع معنی‌دار نبود و تنها اثر امگا-3، بر درصد چربی و کل چربی به ترتیب در سطح 5 و 1 درصد معنی‌دار بود.
نتیجه‌گیری: بر اساس نتایج حالص از این پژوهش، استفاده توأم از اسید آلفا-لینولنیک و اسیدهای چرب اشباع به ویژه اسید پالمیتیک، تولید شیر گاوهای هلشتاین را در اوایل دوره شیردهی، افزایش داد. با مصرف اسید استئاریک در اوایل دوره شیردهی می‌توان ماده خشک مصرفی دام را بهبود بخشید و افت نمره وضعیت بدنی گاو را کاهش داد. همچنین مصرف امگا-3، درصد و کل چربی شیر گاوهای شیری را در اوایل دوره شیردهی بهبود بخشید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of palmitic and stearic acid and alpha-linolenic fatty acids on feed intake, milk production and milk components in Holstein fresh cows

نویسندگان [English]

  • Mohsen Samiei Zafarghandi 1
  • Ali Asadi Alamouti 3
  • farzad ghanbari 4
  • Mehdi Dehghan-Banadaky 5
1 Gorgan University of Agricultural Sciences and Natural Resources
2
3 Department of animal and Poultry Sciences, of Aboureyhan, University of Tehran
4 dept. of animal sciences
5 College of Agricultural and Natural Resources, Tehran University
چکیده [English]

Background and Objectives: Inert or ineffective fat supplements on rumen activity, have been converted to a common ingredient in rations due to its high energy content and its adaptability in dairy farms. Inert fats on rumen activity usually contain high concentrations of long chain fatty acids, including palmitic, stearic, oleic, and linoleic. Research over the last few years has shown that fatty acids are not just a source of energy, but also, have different metabolic applications in cow body and contributed in various ways in their production. In this study, the effects of two palmitic and stearic saturated fatty acid supplements containing the highest levels of fat supplements are studied in the presence and absence of omega-3.
Materials and Methods: thirty two dairy cows with more than two parturition were introduced into the experimental design with randomized complete block design with 4 treatments (2 × 2 factorials). Instantly after delivery and kept in individual place for 65 days. The production and milk components of each one were measured. The treatments included: 1) Base diet with 1.5% stearic acid supplement (75%) without omega-3; 2) Base diet with 1.5% stearic acid supplement with omega-3 3) Base diet with 1.5% palmitic acid supplement (75%) without omega-3, and 4) Base diet with 1.5% palmitic acid supplement without omega-3.
Results: The results of this study showed that In comparison of milk production, the interaction of omega-3 and saturated fatty acids on milk production was significant and milk production of cows fed with palmitic acid treatment with omega-3 was highest (50.92) and There was a significant difference with other treatments (P≤0.01), but there was no significant difference between the other treatments (P≤0.01). Dry matter intake of cows fed with stearic acid without omega-3 was highest (24.77) and had a significant difference with other treatments (P≤0.05). However, there was no significant difference between the three treatments (P≤0.05). In the study of milk components including, fat percentage and total milk fat, the interaction of saturated fatty acids with omega-3 as well as the effect of type of saturated fatty acids were not significant but also, omega-3 effect on fat percentage and total fat was at level 5% and 1% has been significant.
Conclusion: Using the combination of α-linolenic acid with saturated fatty acids, especially palmitic acid, it is possible to increase the production of Holstein cows in fresh cows and early lactation. With the use of stearic acid in the early lactation, the dry matter can be increased by improving of dry matter intake and reducing BCS. Also, with omega-3 consumption, you can improve the percentage and total fat milk of cows during early lactation.

کلیدواژه‌ها [English]

  • Stearic Acid
  • Palmitic Acid
  • Omega-3
  • α-Linolenic Acid
  • Fresh Cows
  1. AOAC. 2005. Official Methods of Analysis. 17th ed. AOAC, Arlington, VA.
  2. Bauman, D.E., Harvatine, K.J., and Lock, A.L. 2011. Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fay synthesis. Annu. Rev. Nutr. 31: 299-319.
  3. Boerman, J.P., Firkins, J.L., St-Pierre, N.R., and Lock, A.L. 2015. Intestinal digestibility of long-chain fatty acids in lactating dairy cows: A meta-analysis and meta-regression J. Dairy. Sci. 98: 8889-8903.
  4. Choi, S.H., Gang, G.O., Sawyer, J.E., Johnson, B.J., Kim, K.H., Choi, C.W., and Smith, S.B. 2013. Fatty acid biosynthesis and lipogenic enzyme activities in subcutaneous adipose tissue
    of feedlot steers fed supplementary palm oil or soybean oil. J. Anim. Sci. 91: 2091-2098.
  5. de Souza, J., and Lock, A.L. 2019. Effects of timing of palmitic acid supplementation on production responses of early-lactation dairy cows. J. Dairy. Sci. 102: 1–14. (In Press)
  6. de Souza, J., Preseault, C.L., and Lock, A.L. 2018. Altering the ratio of dietary palmitic, stearic, and oleic acids in diets with or without whole cottonseed affects nutrient digestibility, energy partitioning, and production responses of dairy cows J. Dairy. Sci. 101: 172-185.
  7. Dias, C.B., Amigób, N., Woode, L.G., Mallol, R., Correig, X., and Garga, L.M. 2017. Improvement of the omega 3 index of healthy subjects does not alter the effects of dietary saturated fats or n-6PUFA on LDL profiles. J. Metabolism Cli. & Exp. 68: 11-19.
  8. Doreau, M., and Chilliard, Y. 1997. Digestion and metabolism of dietary fat in farm animals. Br. J. Nutr. 78: 15-35.
  9. Ferguson, J.D., Galligan, D.T., and Thomsen, N. 1994. Principal descriptors of body condition score in Holstein cows.  J. Dairy. Sci. 77: 2695-2703.
  10. Greco, L.F., Neto, J.N., Pedrico, A., Ferrazza, R.A., Lima, F.S., Bisinotto, R.S., Martinez, N., Garcia, M., Ribeiro, E.S., Gomes, G.C., and Shin, J.H. 2015. Effects of altering the ratio of dietary n-6 to n-3 fatty acids on performance and inflammatory responses to a lipopolysaccharide challenge in lactating Holstein cows. J. Dairy. Sci. 98: 602-617.
  11. Hashemzadeh-Cigari, F., Ghorbani, G.R., and Khorvash, M. 2014. Effects of various sources of essential fatty acids on performance and glucose metabolism of transition dairy cows. Iranian J. Vet. Clin. Sci. 8: 17-25.
  12. Jump, D.B., Lytle, K.A., Depner, C.M., and Tripathy, S. 2018. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. J. Pharmacol Ther. 181: 108–125.
  13. Kadkhoday, A., Riasi, A., Alikhani, M., Dehghan-Banadaky, M., and Kowsar, R. 2017. Effects of fat sources and dietary C18:2 to C18:3 fatty acids ratio on growth performance, ruminal fermentation and some blood components of Holstein. J. Livestock Sci. 204: 71–77.
  14. Khalilvandi-Behroozyar, H., Dehghan-Banadaky, M. Pirmohammadi, R., and AsadNejad, B. 2018. Evaluation of nutritional efficiency of fish oil coated calcium salts under in vitro and in vivo conditions. Iranian J. Anim. Sci. 48: 505-521. (In Persian)
  15. Lock, A.L., Harvatine, K.J., Drackley, J.K., and Bauman, D.E. 2006. Concepts in fat and fatty acid digestion in ruminants. Pages 85–100 in Proc. Intermountain Nutr. Conf. Utah State Univ., Logan.
  16. Lock, A.L., Preseault, C.L., Rico, J.E., DeLand, K.E., and Allen, M.S. 2013. Feeding a C16:0-enriched fat supplement increased the yield of milk fat and improved conversion of feed to milk. J. Dairy. Sci. 96: 6650–6659.
  17. Loften, J.R., and. Cornelius, S.G. 2004. Review. Responses of Supplementary Dry, Rumen-Inert Fat Sources in Lactating Dairy Cow Diets. The Professional Anim. Sci. 20: 461–469.
  18. Loften, J.R., Linn, J.G., Drackley, J.K., Jenkins, T.C., Soderholm, C.G., and Kertz, A.F.  2014. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J. Dairy. Sci. 97: 4661–4674.
  19. Marques, J.A., Del-Valle, T.A., Ghizzi, L.G., Zilio, E.M.C., Gheller, L.S., Nunes, A.T., Silva, T.B.P., Dias, M.S.S., Grigoletto, N.T.S., Koontz, A.F., da-Silva, G.G., and Rennó, F.P. 2019. Increasing dietary levels of docosahexaenoic acid-rich microalgae: Ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J. Dairy. Sci. 102: 1–12.
  20. NRC. 2001. Nutrient Requirements of Dairy Cattle, 6th rev. ed. Washington, D. National Academy Press.
  21. Piantoni, P., Lock, A.L., and Allen, M.S. 2015. Milk production responses to dietary stearic acid vary by production level in dairy cattle. J. Dairy. Sci. 98: 1–12.
  22. Piantoni, P., Ylioja, C.M., and Allen, M.S. 2015. Feed intake is related to changes in plasma nonesterified fatty acid concentration and hepatic acetyl CoA content following feeding in lactating dairy cows. J. Dairy. Sci. 98: 6839–6847.
  23. Rabiee, A.R., Breinhild, K., Scott, W., Golder, H.M., Block, E., and Lean, I.J., 2012. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. J. Dairy. Sci. 95: 3225-3247.
  24. Rico, J.E., Allen, M.S., and Lock, A.L. 2013. Milk yield and milk fat responses to increasing levels of palmitic acid supplementation of dairy cows receiving low and high fat diets. J. Dairy. Sci. 96(ESuppl.): 651Pp.
  25. Rico, J.E., Allen, M.S., and Lock, A.L. 2014. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows. J. Dairy. Sci. 97: 1057–1066.
  26. SAS. 2018. SAS User’s Guide: Statistics. Version 9.4 Edition. SAS Inc., Cary, N.C., USA.
  27. Sato, H., and Inoue, A. 2006. Decrease in stearic acid proportions in adipose tissues and liver lipids in fatty liver of dairy cows. J. Anim. Sci. 77: 347–351.
  28. Sjaunja, L.O., Baevre, L., Junkkarinen, L., Pedersen, J., and Setala, J. 1990. A Nordic proposal for an energy corrected milk (ECM) formula. Proceedings of the 2-nd Session of International Committee for Recording and Productivity of Milk Animal Paris.  156-157.
  29. Van Soest, P.J., Robertson, J.B., and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 74: 3583–3597.
  30. Zachut, M., Dekel, I., Lehrer, H., Arieli, A., Arav, A., Livshitz, L., Yakoby, S., and Moallem, U. 2010. Effects of dietary fats differing in n-6: n-3 ratio fed to high-yielding dairy cows on fatty acid composition of ovarian compartments, follicular status, and oocyte quality. J. Dairy. Sci. 93: 529-545.