بحث سازی رشد باکتری‌های سلولولیژیک جدا شده از دستگاه گوارش اسب و برمغی اثر

مریم هریسینی شاکری، مrine HRSINSI SAKERI،*، حسین معتمدی، حسین میثمی، و
امساله تیموری یانسزی

دانشجوی دکتری و دانشیار گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.

آسانتر گروه زیستشناسی دانشگاه علوم، دانشگاه شهید چمران اهواز. دانشیار گروه علوم دامی، دانشگاه علوم دامی و شیلات.

دانشگاه کشاورزی و منابع طبیعی ساری

تاریخ دریافت: 98/2/17
تاریخ پذیرش: 98/4/22

چکیده

سایه و هدف: مواد لیگن سلولولیژی در چربه نشخوارکندگان از اهمیت بالایی برخوردار بوده و به دلیل مقرون به صرفه بودن و اثر بر عملکرد بهبودی شکمک، سلامتی آن در چربه نشخوارکندگان گنجانده می‌شود. گرچه این تركیبات توسط میکروب‌های شکمک قابل تخریب می‌باشد، ولی وجود پروتئین، ویبر و سایر مواد معنی‌دار با میکروب‌های نشخوارکننگ‌ها در مصرف نشان می‌دهد که امکان شکمک برای هضم خوراک مصرف شده در کاریابی بالایی ندارد. بنابراین استفاده شکمک جهت بال کردن این کاریابی ضروری به نظر می‌رسد. لذا این پژوهش با هدف بهبود سایه ریزی بیانی وی باتکتری‌های سلولولیژیک جدا شده از دستگاه گوارش اسب و اثر انتقال آنها به شیارچیان شکمک به‌سازندی‌های تولید گاز و گوارش پذیری که گیاهی در شرایطی برون تی انجام پذیرفت.

مواد و روش‌ها: این پژوهش در شیارچیان آزمایشگاهی و در قالب طرح‌کلی تصادفی انجام شد. باکتری‌های سلولولیژیک جدا شده Enterobacter Paenibacillus polymyxa L12 Paenibacillus polymyxa L11 به شکمک اضافه شد. سپس با انتقال سانتی گراد و به‌سازندی از عصب سنتی و pH 6.7 به دمای 25 درجه سانتی گراد و به‌سازندی از تولید گاز و به‌سازندی آزمایشگاهی که کم در رختی به‌پایان استفاده از 6 تا 7 کیک بیشتری از مورد پذیرفتن قرار گرفتند. به این منظور از چهار راس گوسفند میل منابع شکمک گرفته شد. در هر تکیه‌ی 6 میلی‌لیتر شکمک به باکتری‌های مورد نظر تلقیح و که گیاهی کرده شد.

بافت‌ها: نتایج نشان داد که جدایی پت‌۵/۲ pH به‌پایان رشد را در دمای ۳۹ درجه سانتی گراد و

mohammadabadi@asnrukh.ac.ir
نتیجه‌گیری: طول‌کردن نیمه pH بررسی و تولید آنزیم جدایی بسیار مهم بوده و می‌تواند به‌طور ایمن و اقتصادی از نظر جدید قرار گیرد. همچنین مقادیر pH باید در شرایط آزمایشگاهی بهتری شود. این اثرات بهبود‌بخشیدن در حیاتیت اکتیوریتیت ترمینال به سمت تولید PH غذا و کمبود میکروبی بیشتر رفت و قابلیت هضم مواد غذایی از این تیمار افزایش یافت.

واژه‌های کلیدی: اسپ. باکتری سلولولیک، تخمیر، قابلیت هضم، کاه‌گذم

مقدمه

ایران در منطقه‌ای قابلیت خشک و نیمه خشک قرار گرفته است و عدم زمین‌های آشپزی آن به‌کوشت غلات اختصاص یافته است به تبع آن بخش دامپروری کشور که از بقایای زراعی و یا سایر محصولات جانی این غلات در کشور استفاده می‌کند کاه غلات انرژی خام تقریبی مشابه با سایر علف‌های مورد استفاده در تغذیه نشخوارکندگان دارد (۱۹) اما به دلیل دارای بودن دیواره‌های بالا و نزدیک هضم پیام باعث قابلیت هضم و در نهایت تابعیت انقباضی خاصی برای حیوانات مشاهده شده‌است. با این حال مواد لیگید سلولوزی به دلیل مواد بهبودیان در ساختار و سلائم ویژگی‌های ویژه در جریان نشخوارکندگان از اهمیت بالایی برخوردار هستند. پیشرفت‌های کربوهیدراتی گاهی برای بسیاری از حیوانات غیر قابل هضم بوده ولی توسط بسیاری از میکرو‌های شکم‌های هیدرولیز و تخمیر می‌شوند. عوامل بسیاری بر هضم دیواره‌های سلولوزی در شکم‌های نشخوارکندگان این دراز از جمله این عوامل
سرولولیتیک اسپتیسیس نیکوری و برتبر یارای هضم مواد
فیبری نسبت به گاو و گوسفنده دارد بوهو و تغذیه
سرولولیتیک اکسیمیسم دستگاه گوارش کمی در
شرایط اسیدی و ضد نور و تولید آنزیم
باتکریتی سلولولیتیک جدایی از دستگاه گوارش
اسباب و اثرات انتقال آنها به شیامه سلولولیتیک
فراستهای تولید گاز و گوارش پدیده کاه گندم در
شرایط برون نی ابتنا پذیرفته.
مواد و روش‌ها
این آزمایش در دانشگاه علوم کشاورزی و منابع
طبیعی خوزستان انجام شد. در پژوهش از چهار
باتکریتی جدا شده از دستگاه گوارش اسپتیسیس شامل
Paenibacillus Paenibacillus polymyxa L11
و Enterobacter cloacae L2 polylyxa L12
استفاده شد. این باتکریتی Escherichia coli Z2
توسط همین محققین با استفاده از مختبر کشت
محول نمک‌های پاپی چهار کربن‌سازی می‌شود سلولول
به عنوان تنها منبع کریز از مذکور نازه اسپتیسیس
و این کشت با استفاده از روش‌های فناوری شناسی
نبودن (15) باتکریتی های دوم نظر بعد از همین‌سازی،
در شرایط آزمایشگاهی به شیرین شکم‌بند منظم شد
و تأثیر آن بر تخمر و قابلیت هضم کاه گندم مورد
بررسی قرار گرفت.

مرحله اول آزمایش: شامل بهینه‌سازی دما و
pH نشان باتکریتی سلولولیتیک جدا شده از دستگاه
گوارش 4 راس است غربی به و در مرحله دوم تأثیر
این باتکریتی بر تخمر و قابلیت هضم کاه گندم در
قابل طرح کارا تصادف با ٥ بیمار (تیمار شاهد).
Paenibacillus Paenibacillus polymyxa L11
و Enterobacter cloacae L2 polylyxa L12
و ٧ نکرار با استفاده از تکنیک (Escherichia coli Z2
در طی چند دهه گذشته جهت بهبود هضم و تخمير
مواد فیبری تحقیقات فراوانی صورت گرفته است. که
می‌توان به دستکاری زنگ‌دهی دیواره سلولی (۱۹)
بکارگیری روش‌های فیزیکی و شیمیایی فراوری
خوراک، دستکاری شکم‌بند تلقیح باتکریتی به
شکم‌های (۳۴، ۳۶، ٥٦) و یا تغذیه میکروب‌ها به دام
اشتار کرده. هنگامی (۱۹۷۷) در آزمایشی با تلقیح
باتکریتی‌های فیروپاسیک به شکم‌های بکرکاریان
نحوه تیسی و شیمیایی (۷۶). عرضه از میکروبا
(۵) برای انتقال باتکریتی تجلیه کننده
لیگوسالوژی جدا شده از روده مویان به شیرینه شکم‌بند
تاثیر بر فراسته‌ها تولید گاز و قابلیت هضم مواد
معده کاه کندم و سرماخت خرما مفتاده تکنونی (۴).
در حقیقت این تصور که میکروگانیسم‌های
شکم‌بند قابلیت تجهیز به اینفیکت قابل حمل تاردد،
همچنین باقی‌مانده و اثر لازمه جهت تلقیح باتکریتی
به شکم‌های درستی و کم‌ chỉnh روده است. که از رابط آن
می‌توان به درک نکشی از اکسیمیسم پیچیده
شکم‌بند، فیت‌سمت‌های قابل اعتماد برای
باتکریتی‌های سلولولیتیک شکم‌بند، درک ضعف عوامل
اکولوژیحی حاکم بر تخلیه باتکریتی‌ها و کارکردهای
فیروپاسیک درک ضعف این تکنیک که کامل آن‌زمین
گلیکوزیل هیدروالز نازهند دستکاری است (۱۹) و
اختصاص ناکارامل باتکریتی‌های سلولولیتیک متقن شده
به شکم‌بند شرح اکرده.

اصل حیوانی نک می‌دی چه عوامل جز تخمیر کننده
در انتها دستگاه گوارش است. اگر چه این حیوان
غیرشنخوارکنده می‌باشد اما فعالیت
میکروگانیسم‌های دستگاه گوارش این حیوان تنش
سیستم مکانی در تغذیه آن ایفا می‌کند. یک‌شیر این‌ها
می‌توانند مواد غذایی مورد نیاز خود را با رژیم غذایی
۱۰۰ درصد عوامل شیمیایی برخی محققین بیان
نموده‌اند که آنزیم‌های حاصل از باتکریتی‌های
بهبینه سازی دما و pH رشد جذایی‌های باکتریایی
برای انتخاب دما و pH رشد جذایی‌ها، منحنی رشد این باکتری‌ها در دو دما ۲۵ و ۳۹ درجه سانتی‌گراد و سه pH و سه pH/۰.۵ در محیط کشت مناسب رسم گردید. به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

بهبینه تولید آنزیم جذای‌های باکتریایی: برای انتخاب دما و pH بهبینه تولید آنزیم باکتریایی یا pH و دمای ۲۵ و ۲۹ درجه و در محیط pH ۰.۵ و ۰.۷ و ۰.۵ در نظر گرفته شدند. به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

بهبینه تولید آنزیم گاز‌ها
آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

بهبینه تولید آنزیم جذای‌های باکتریایی: برای انتخاب دما و pH بهبینه تولید آنزیم باکتریایی یا pH و دمای ۲۵ و ۲۹ درجه و در محیط pH ۰.۵ و ۰.۷ و ۰.۵ در نظر گرفته شدند. به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی ه‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری رشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی H‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری Rشد باکتریایی رسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی H‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری Rشد باکتریایی Rسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل نسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی H‌پاکتری (دوتا دما، سه pH تا pH سه نکرار) در نظر گرفته شد. اندازه و بهره‌وری Rشد باکتریایی Rسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل Nسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی H‌پاکتری (دوتا دما، سه pH تا pH سه Nکرار) در Nظر گرفته شد. اندازه و بهره‌وری Rشد باکتریایی Rسم شد.

آزمون تولید گاز میزان گاز تولیدی حاصل از تخمیر شکم‌یابی غذای محیط و تشکیل Nسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی H‌پاکتری (دوتا دما، سه pH تا pH سه Nکرار) در Nظر گرفته شد. اندازه و بهره‌وری Rشد باکتریایی Rسم شد.

آزمون Tولید گاز میزان گاز تولیدی حاصل از Tخمیر شکم‌یابی غذای محیط و تشکیل Nسخه (آداما) (۱۹۸۸) از این باکتری‌ها به این منظور ۱۸ ارل ۲۵۰ میلی‌لیتر بازی H‌پاکتری (دوتا دما، سه pH تا pH سه Nکرار) در Nظر گرفته شد. اندازه و بهره‌وری Rشد باکتریایی Rسم شد.
آزمایش‌گاه متقلش‌ش و تحت شرایط بی‌هوای قرار گرفت. درون لوله‌های ۱۰۰ میلی لیتری ۵۰۰ میلی‌گرم از ماده خشک کاه گندم همراه با مایع شکم‌های بی‌هوای و پز اضافه مصنوعی (با نسبت ۱ به ۴) ریخته شد و سپس به این ویل‌ها ۱ میلی لیتر مایع حاوی باکتری مورد نظر با غلظت یک میکارین‌درصد اضافه شد و در شرایط بی‌هوایی در دمای ۳۹ درجه سانتی‌گراد انکوه شدند. در پایان روز دوم، پس از گذشت ۴۸ ساعت از شروع آزمایش، در بخش‌های مورد عهده قرار گرفت. این کار از پیش به‌ردن ۵۰ درصد اضافه می‌گردد. بعد از آن ۵ گرم آنزیم بی‌پروتئاز در سی سی‌سی سه میلی‌لیتر تری‌کولین به‌رنگ و پس از گذشت ۵۰ سانتی‌متر، پس از گذشت ۱۰۰ سانتی‌متر، پس از گذشت ۱۵۰ سانتی‌متر و پس از گذشت ۲۰۰ سانتی‌متر ریخته شدند. مس اسید کاربن‌دی‌آکسید ۲۰۰ سانتی‌متر بالا در که و به هر لوله ۵ سی‌سی از محلول آنزیم‌افزاره‌اش داده شد. در این مرحله لوله‌ها به‌دست ۴۸ ساعت دیگر انکوه شدند. سپس محصولات لوله‌ها به کمک پارچه‌ای از جنس داکرون و پس از دو ساعت، گرم از آن ماده فیبر که در آن ماده اندازه‌گیری شد. یک قطعه ناحیه محلول در شوندگی خشک از استفاده از چرب و چربی گردید. همکاران (۱۹۹۱) ۲۲ و یک بخش ناحیه محلول در شوندگی استفاده با استفاده از روش استاندارد اندازه‌گیری گردید. از رابطه‌ای زیر قابل‌پذیری هضم مواد غذایی معجزه‌شده:

ماده غذایی اولیه / ماده غذایی اولیه - ماده غذایی باقی‌مانده = قابل‌پذیری ماده غذایی

درون ویل‌های ۱۰۰ میلی‌لیتری شیشه‌های ۵۰۰ میلی‌گرم کاه گندم همراه با ماشی شکم‌های بی‌هوای و پز اضافه مصنوعی (با نسبت ۱ به ۴) ریخته شد و سپس به این ویل‌ها ۱ میلی لیتری مایع حاوی باکتری

مریم هرینی‌نی‌پاپ و همکاران

نتایج و بحث

بهبوزاری: نتایج مربوط به بین‌های شرایط تولید آنزیم جدایی‌های مورد آزمایش بسط از گونه Polenibacillus و ۲ گونه‌شده‌اند. منحنی رشد نشان‌داد که این جدایی بهترین رشد Polenibacillus polybaccyta L11
انزیم آنها در دمای 39 درجه سانتی‌گراد بهتر از pH 5/2 از خود نشان می‌دهد. این ایزوپیک از فعالیت آنزیمی را در دمای 39 درجه با pH 7/5 و در زمان 24 ساعت با pH دما به همراه رشد با باکتری Enterobacter cloacae L2 و polymyxna L12 درجه سانتی‌گراد و 7/6 بود. همچنین این دو باکتری بیشترین فعالیت آنزیمی را در دمای 39 درجه سانتی‌گراد و pH 7/2 به ترتیب در زمان‌های 44 و 48 ساعت از خود نشان دادند. Escherichia coli Z2 در دمای 39 درجه بهتر ازدما 25 درجه رشد کردند. شرایط محیطی بر افزایش رشد و فعالیت آنزیمی تأثیر بسیار بالایی داشته از این رو حفظ خرائط بیشتری موجب بهبود pH دمایی و pH می‌شود. بر رشد جدایی تأثیر بکار از pH مشتق موجب می‌شود مقدار قرار گرفتن و pH بهینه برای رشد با pH 28/7 و زمان 6/5 ساعت و در محیط pH می‌کاران (20/3) نشان داد که pH 6/75 و دمای ح хотя 37 با بیشترین فعالیت آنزیمی را داشته است (20/3).
Figure 1. Effect of initial pH and temperature on growth bacteria isolated from gastrointestinal tract of horse. Paenibacillus polymyxa L11 (a), Paenibacillus polymyxa L12 (b), Enterobacter cloacae L2 (c), Escherichia coli Z2 (d)
و دما بر فعالیت CMCase باکتريك‌های چندان شده از دستگاه گوارش اسب.

شکل ۲ اثر pH و دما بر فعالیت CMCase باکتريهای جدا شده از دستگاه گوارش اسب.

Figure 2. Effect of initial pH and temperature on CMCase activity of bacteria isolated from gastrointestinal tract of horse. *Paenibacillus polymyxa L11 (a'), Paenibacillus polymyxa L12 (b'), Enterobacter cloacae L2 (c'), Escherichia coli Z2 (d')
Table 1. Effect of inoculation of bacteria isolated from gastrointestinal tract of horse on fermentation parameters of wheat straw

| Treatment | Microbial biomass efficiency (mg) | Microbial biomass (mg) | Microbial biom
تشریح بیوهای در نشخورکن‌دانگان (۲)، شماره (۲) ۱۳۹۸

جدول ۲- اثر تلیفگون‌های بакتری جداسازه از دستگاه گوارش اسب بر قابلیت هضم آنزیم‌های مواد غذایی کاک‌گندم (درصد)

| Table 1. Effect of inoculation of bacteria isolated from gastrointestinal tract of horse on in vitro nutrient digestibility of wheat straw (%) |
|---|---|---|---|---|
| ADF | NDF | Organic matter | Dry matter |
| 32.53^a | 34.56^b | 37.76^d | 38.83^c |
| 35.55^b | 47.69^a | 49.39^a | 50.73^a | Paenibacillus polymyxa L11 |
| 32.87^d | 43.29^b | 43.53^b | 44.90^b | Paenibacillus polymyxa L12 |
| 32.93^c | 37.06^c | 42.10^{ce} | 43.25^d | Enterobacter cloacae L2 |
| 31.88^e | 40.61^d | 39.43^{fd} | 40.58^d | Escherichia coli Z2 |
| 0.5690 | 0.6046 | 1.019 | 0.9123 |
| SEM | SEM | SEM | SEM |
| 0.0015 | <0.0001 | <0.0001 | <0.0001 |

P-value

<table>
<thead>
<tr>
<th>SEM: Standard error of the means</th>
</tr>
</thead>
<tbody>
<tr>
<td>In each column, values with different letters are significantly different (P<0.05).</td>
</tr>
</tbody>
</table>

مطالعات قابل توجهی جهت دستکاری شیاریت به عنوان شیاریتی دارنده گوارش با بکتری‌های مختلف از نظر تهیه کننده، تغذیه و ساختاری بهبودی در تغذیه و سازگاری در بیماری‌های مشاهده شده در دام‌ها و میکروب‌های موجود در گوارش بکتری‌های اختصاصی دارند. این مطالعات با توجه به بکتری‌های مختلف با موجب بهبود در استقرار و تغذیه این بکتری‌ها می‌تواند به بهبود سلامت و تغذیه این بکتری‌ها کمک کند.

مراجع:

1. حسنی، ش. (2016). تأثیر تغذیه با بکتری‌های مختلف بر استقرار شیاریتی در بیماری‌های مشاهده شده در دام‌ها. تحقیقات پزشکی و جهانی، 17(1), 23-30.

مورد استفاده توسط این باکتری (پلوکس) به محیط کشت اضافه شد که منادی در محیط کشت را داشت (11). در آزمایش کشت پلوکس دیگری توسط زیمربه همکاران (2002) به مدت 144 ساعت پس از تلقیح به محیط کشت به میزان 1 درصد جمعیت کل میکروبی وجود داشت و افزایش اندکی در هضم فیبر توسط این باکتری مشاهده گردید (40). در هر دو مطالعه مذکور سابقه مورد استفاده فاقد پروتوژا بود. ساوه و همکاران (2004) نیز بین نموندگان که انتقال باکتری‌های سولولولیکس جدا شده از دستگاه‌های نشخوارکننده، شکم‌های خاک و غیر ناصلول در سوئنداخنی کاه گندم و سیوس گندم در 24 ساعت اول کشت شد. این محققین باین نموندگان که این باکتری‌ها نسبت به باکتری‌های سولولولیکس دستگاه غیرشکم‌ها نشخوارکننده اهلی فعالیت اند. این داشت و می‌تواند به عنوان یک افزودنی در جیره نشخوارکننده اهلی استفاده شود (24).

بطور کلی میزان تخریب فیبر در شکم‌های استیکی به‌ویژه این باکتری به‌طور کلی تک تک میکروب‌های موجود در کسرسیم میکروفیور در داد. باکتری‌های منقل شده به شیرای از محصولات با فیبر تخمیر و قابلیت هضم تاثیر بگذارند که در ازای یک‌فاکتور همبستگی ماننداری در شکم‌های قدرت اندازه‌شناسی و سیر قدرت فیزیکی، شیمیایی و دما شکم‌های قدرت اندازه‌شناسی آزمیجی گیاهی هضم مواد خوراکی باشد. گزارش که مورد استفاده توسط این باکتری (پلوکس) به محیط کشت اضافه شده در پیوسته حاضر قدرت تخریب در شیرای تخمیر را داشت و توانسته است تولید که در این بیمه‌ها، می‌توانان با هر دو درازمان کم‌پوش میکروبی، ماده آفتاب‌های هضم سد و راندمان کم‌پوش میکروبی را تغییر دهد. در مورد می‌توانان به‌طور کم‌پوش در این بیمه‌ها افزایش تخمیر در همکاران (1997) در مطالعه‌ای با دستگاه‌های زئی‌تک سویه باکتری‌های باکتری‌پیژندی تاپینون‌سیلوکسون جدایی از کولون انسان از نظر تولید آنزیم گلوکاتاز و انتقال آن به محیط کشت مخرب با جمع‌آوری میکروبی شکم‌های پلاکتا نمودند که این باکتری‌ها نه تنها زمانی که کوندرولین سویه‌ها (یک مکول‌نگی ساکارید)
نتیجه گیری کلی
نتایج بهره‌های حاضر نشان داد که باکتری‌های
جداسازی شده از دستگاه گوارش اسب در دمای
39 درجه سانتی‌گراد که دمای مطلوب شکم‌بوده و
همچنین در دامنه pH 7/6 تا 8/6 قادر به رشد و تولید
آنرژی بودند. نتایج این جدایی‌ها به مانا شکم‌بوده در
شرایط آزمایش‌گاهی باعث بهبود تخمیر و افزایش
راندمان میکروی و افزایش قابلیت هضم مواد غذایی
کاه گندم شد. که نشان می‌دهد این باکتری‌ها احتمالا
 قادر به زدن مانی در شرایط شکم‌بوده و تولید آنرژی
سولولولیتیک بوده. با توجه به اینکه بهره‌های حاضر
در شرایط آزمایش‌گاهی انجام شده است به نظر
می‌رسد جهت بررسی و اطمینان بیشتر از اثر این
باکتری‌ها بر تخمیر و گوارش پذیری کاه گندم بهتر
است این آزمایش‌ها در ادامه زده نیز صورت پذیرد.

تشکر و قدردانی
نویسنده‌گان بر خود لازم میدانند از دانشگاه علمی
کشاورزی و مبانع طبیعی خوزستان به خاطر حمایت
مالی این پژوهش تشکر و قدردانی به عمل آورند.

منابع
4. Azizi, A., Mohammadabadi, T., Motamedi, H., Chaji, M., and Fazaeli, H. 2016. Effect of transferring lignin and lignocellulose-

Optimization growth of isolated cellulosytic bacteria from gastrointestinal tract of Arabian horse and investigation of the effect of transferring to rumen fluid on wheat straw digestibility

M. Harsini Shakarami¹, T. Mohamadabadi², H. Motamedi³, M. Sari², A. Teimouri Yansari⁴

¹Ph.D. Student and ²Associate Prof., Dept. of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran, ³Professor, Dept. of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Khuzestan, Iran, ⁴Associate Prof., Dept. of Animal Sciences, Faculty of Animal Sciences and Fishery, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Received: 07/05/2019; Accepted: 15/07/2019

Abstract

Background and objectives: Lignocellulosic material is important in ruminant rations and because of its cost-effectiveness and effect on optimum rumen performance and its health included in ruminant rations. Although these compounds can be fermentable by many rumen microbes, the presence of proteins, fibers and other edible source nutrients in the feces shows that the rumen ecosystem does not have high efficacy for digestion. That’s way, it seems necessary, the manipulation of the rumen to increase of this performance. Therefore, this study was carried out with the aim of the investigation of optimization growth of cellulosytic bacteria isolated from gastrointestinal tract of Arabian horse and the effect of transferring to the rumen fluid on the in vitro parameters of gas production and digestibility of wheat straw.

Materials and methods: This research was conducted in vitro based on a completely randomized design. The cellulosytic bacteria isolated from the gastrointestinal tract include Paenibacillus polymyxa L11, Paenibacillus polymyxa L12, Enterobacter cloacae L2, and Escherichia coli Z2. At first, optimization of temperature and pH for growth and production of the enzymes of these bacteria was carried out at two temperatures of 25°C and 39°C and three pH level of 2.5, 7.5 and 6.2. In the next step, these bacteria were transferred to the rumen fluid and gas production parameters and in vitro digestibility of wheat straw were investigated using gas production techniques and two step digestion, respectively. For this purpose, rumen fluid was taken from four sheep. In both methods, rumen fluid was inoculated with bacteria and incubated with wheat straw.

Results: The results showed that Paenibacillus polymyxa L12 had the best growth at 39°C and pH 5.2 and had the highest enzyme activity at 39°C, pH 5.7 and 24 hours. The optimum temperature and pH for growth of Paenibacillus polymyxa L11 and Enterobacter cloacae L2 were 39°C and 6.2. These two bacteria exhibited the highest enzymatic activity at 39°C and pH 6.2, at 24 and 48 hours, respectively. Escherichia coli Z2 showed the highest growth at 39°C and pH 6.2, but the most enzymatic activity of this bacterium was 39°C, pH 5.2 and 48 hours. The isolates reduced the gas production of wheat straw, increased truly degraded organic matter, microbial biomass and microbial biomass efficiency (P<0.05). The highest and lowest potential of gas production was allocated to control and Escherichia coli Z2 treatments, respectively. The lowest and highest amount of truly degraded organic matter was related to the control and Paenibacillus polymyxa L11 treatment, respectively. There was no significant difference

* Corresponding author: mohammadabadi@asnrukh.ac.ir
between partitioning factor, microbial biomass and microbial biomass efficiency of bacterial treatments \((P>0.05)\), but they were more than control. *Paenibacillus polymyxa* L11 has the highest digestibility of dry matter, organic matter, neutral detergent fiber and acid detergent fiber. The control had the least digestibility of dry matter, organic matter and neutral detergent fiber. There was no significant difference for digestibility of acid detergent fiber among *Paenibacillus polymyxa* L12, *Enterobacter cloacae* L2 and *Escherichia coli* Z2 treatments and control \((P>0.05)\).

Conclusion: Generally, temperature and pH had an effect on the growth and production of enzymes of isolates. All isolates grew at a temperature of 39 \(^\circ\)C, which is the optimal temperature of the rumen, better than 25\(^\circ\)C and had more enzymatic activity at 39\(^\circ\)C. These bacteria were able to improve rumen fermentation and *in vitro* digestibility of wheat straw. In the bacterial treatments, the fermentation pathway went towards producing less gas and more microbial protein, and the digestibility of nutrients in these treatments increased.

Keywords: Cellulolytic bacteria, Horse, Fermentation, Digestibility, Wheat straw