بررسی انحراف کدونی و تجزیه و تحلیل بیوانفورماتیکی توالی کد کننده ژن کالپاستاتین در پستانداران

نوع مقاله: مقاله پژوهشی

نویسنده

دانشجو

چکیده

چکیده
سابقه و هدف: کالپاستاتین از آنزیم‌های تشکیل‌‌دهنده سیستم پروتئولیتیک کالپاین است که این مجموعه پروتئینی پروتئولیتیک شامل پروتئازهای طبیعی وابسته به 2+Ca است و در شکل‌گیری، تجزیه بافت‌های عضلانی و تردی گوشت پس از کشتار موثر بوده و به عنوان یک ژن‌ شاخص در ارتباط با راندمان رشد و کیفیت گوشت به حساب می‌آید. هدف از این مطالعه ارزیابی ساختار ژنی و پروتئینی کالپاستاتین با استفاده از ابزارهای بیوانفورماتیکی در چند گونه از پستانداران بوده است.
مواد و روش: در این پژوهش توالی ناحیه کد کننده ژن و پروتئین کابپاستاتین در شش گونه پستاندار (انسان، موش، گاو، کژگاو، گوسفند و بز) مورد بررسی قرار گرفت. توالی‌های ژنی و پروتئینی از بانک ژن بازیابی شد و مورد تجزیه و تحلیل قرار گرفتند. آنالیز همولوژی و همترازی، فیلوژنی، تنوع نوکلئوتیدی در طول ناحیه کد کننده این ژن و همچنین تنوع در کدون پایانی با استفاده از نرم افزارهای کلاستال امگا و مگا هفت انجام گرفت. برنامه‌های ساپما و پروتپارام برای بررسی همولوژی، تنوع اسیدهای ‌آمینه و اسید آمینه انتهایی در ساختار پروتئینی، توالی‌های بازیابی شده از پایگاه داده اِن سی بی آی، مورد استفاده قرار گرفتند. با استفاده از نرم‌ افزار کدون دبلیو (نسخه 1.4.2) شاخص‌های ترجیح کدونی برآورد شد.
یافته‌ها: مقدار شاخص سازگاری کدون در گونه کژگاو بالاترین (256/0) و در گونه گوسفند کمترین مقدار (236/0) را داشت. آنالیز ساختار پروتئنی کالپاستاتین نشان داد که در کل توالی‌های مورد پژوهش، آمینواسید لیزین با 623 جایگاه بیشترین و آمینواسید تریپتوفان با 5 جایگاه کمترین تکرار را در ساختمان این پروتئین داشتند. نسبت آمینواسیدهای قطبی به آمینواسیدهای غیر‌ قطبی در این پروتئین 2 به 1 بود. مقدار گرایش کدونی مترادف یا کارکرد نسبی کدون‌های مترادف برای آمینواسیدهای سرین و آسپارتیک اسید به عنوان اسیدآمینه انتهایی در گونه‌های مختلف به ترتیب برابر با (38/1AGC=) و (01/1GAU=) محاسبه گردید. گونه گوسفند دارای بیشترین اسیدیته ایزوالکتریک و گونه بز در شاخص تعداد کدون‌های موثر دارای بیشترین مقدار بوده اند.
نتیجه گیری: آنالیز توالی آمینو‌اسیدی در زنجیره پروتئینی کالپاستاتین نشان داد که این پروتئین دارای بخش قابل توجه‌ا‌ی از آمینو‌اسیدهای آبگریز می‌باشد. با توجه به نقش بازدارندگی پروتئین کالپاستاتین روی فعالیت آنزیم کالپاین در عضلات و همچنین از آن‌جایی که بیشتر توالی کالپاین را آمینو‌اسیدهای آبدوست شکل داده اند، نشان از نقش به سزای این آمینو‌اسیدهای آبگریز برای فعالیت در مقابل بخش آبدوست کالپاین را دارد.‌ آنالیز انحراف کدونی نشان داد که در بین گونه‌های مورد پژوهش، در گونه کژگاو شاخص ترجیح کدونی بیشتر از سایر گونه‌ها بوده و کارکرد کدون‌های بهینه در ‌این گونه‌ کارآمدتر از سایر گونه‌های مورد مطالعه نشان داده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Codon usage deviations and bioinformatics analysis of encoding sequence of Calpastatin gene in some mammalian species

چکیده [English]

Abstract2
Background and Object: Calpastatin (CAST) is one of the enzymes of Calpine proteolytic system. The proteolytic protein complex contains Ca+2 dependent proteases which contributes in construction, degradation and muscle tissue compression after slaughter, and is also regarded a candidate gene associated with growth efficacy and quality of meat.
Materials and Methods: In this study, gene and protein coding sequences region of CAST in six species of mammals (human, rat, cow, Bos grunniens, sheep and goats) were examined. Gene and protein sequences were retrieved from gene bank and then analyzed. Homology analysis and alignment, phylogenetic and nucleotide diversity and variation in coding region and stop codon were carried out using the softwares Clustal Ω and Mega7. SOPMA and Protparam programs were used for homology and alignment analyses, and to investigate the atoms diversity in protein structure, amino acid and terminal amino acid diversity in sequences retrieved from the NCBI database. Preferred codon sequences were obtained using CodonW software to explore the codon usage status.
Results: Codon adaptation index (CAI) had the highest value for Bos grunniens (0.256) and lowest value for Ovisaries (0.236). Using bioinformatics software for better understanding of protein structure of CAST showed that, in all sequences, the amino acid lysine was the most frequent by 623 observations and amino acid tryptophan was the least with 5 repeat in the structure of the protein. The ration of Polar amino acids to non-polar amino acids in the protein was 2. The relative efficiency of synonymous codons (RSCU) for the amino acids serine and aspartic acid as the terminal amino acid in different species were, respectively, (AGC =1/38) and (GAU =1/01). Ovisaries species showed the maximumn PI and The species Capra hircus had the highest value of effective number of codons index (ENC) .
Conclusion: hydrophobic amino acids constitute the main part of the amino acid sequence of Calpastatin protein. Given the role of inhibition of Calpastatin protein for the activity of the enzyme calpain in muscle and considering that the most sequences of calpain are captured by hydrophilic amino acids, the explore of amino acid sequence in Calpastatin and the role of these hydrophobic amino acids against the hydrophilic amino acids in calpain is important. Calpastatin protein, is much more tolerant in humans rather than ruminants. The codon bias analysis of the studied species showed that, in the evolution, Bos grunniens protein species had higher phenotype appearance for preferred codons than other species and function of the optimal codons were shown to be stronger than others.

کلیدواژه‌ها [English]

  • Keywords: Calpastatin
  • bioinformatics analysis
  • codon bias
  • the spatial structure
1.Bahrampour, V., Mohammadabadi, M.R., Mirzaei, H.R., Baghizadeh, A., Dashab, G.R., Mohammadi, A., Alinaghizadeh, R.A., Soflaei, M. and Khesali, A. 2008. Molecular analysis of Calpastatin gene in Kermani sheep herds. J. Agri. Sci and Natural Resources. 15:124-131. (In Persian)
2.Balcerzak, D., Cottin, P., Poussard S., Cucuron, A., Brustisj, J. and Ducastaing, A. 1998. Calpastatin-modulation of m-calpain activity is required for myoblast fusion. Europ. J. Cell. Bio. 75: 247–253.
3.Barazandeh, A., Mohammadabadi, M.R., Ghaderi, M. and Nezamabadipour, H. 2016. Predicting CpG islands and their relationship with genomic feature in cattle by hidden Markov model algorithm. J. App. Anim. Sci. 6:571-579. (In Persian)
4.Barazandeh, A., Mohammadabadi, M.R., Ghaderi, M. and Nezamabadipour, H. 2016. Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech. J. Anim. Sci. 61: 487-495.
5.Bishop, M.D., Koohmaraie, M., Killefer, J. and Kappes, S. 1993. Restriction fragment length polymorphisms of the
e calpastatin gene. J. Anim. Sci. 71:2277.
6.Dodds, K.G., McEwan, J.C. and Davis, G.H. 2007. Integration of molecular and quantitative information in sheep and goat industry breeding programmes. Small Ruminant. Res. 70:32-41.
7.Elyasi Zarin Ghobaii, Gh., Shojae Ghias, J., Nasiri, M.R., Pirahri, A. and Javanmard, A. 1384. Polymorphism in Calpastatin Gene by MSPI/RFLP.Fourth Biotechnology Conference of the Islamic Republic of Iran - Tehran . 2-1. (In Persian).
8.Esmaiily, S., Mohamad Talee, A. and Alamzadeh, A. 2011. computer bioinformatic and identification of motifs in Na+/H+ antiporter plant promoters. The 7 National Biotechnology Congress of Iran - Tehran . (In Persian).
9.Ghazi, Y. and Hadadi, F. 2018. Bioinformatics design of the recombinant IFN-α / β receptor protein to counteract the antagonistic effects of the VP35 protein Ebola virus. J. Biosafety. 2: 29.0430.
10.Gupta, S.K., Bhattacharyya, T.K. and Ghosh, T.C. 2004. Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J. Bio. mol. Struct. Dyn. 21: 527-535. 11.Hadizadeh, M., MohammadAbadi, M., Niazi, A., Esmailizadeh Koshkoiyeh, A., Mehdizadeh Gazooei, Y. and MolaeiMoghbel, S. 2013. Use of bioinformatics tools to study exon 2 of GDF9 gene in Tali and Beetal goats. J. Modern Genetics. 8: 283-288. (In Persian).
12.Hadizadeh, M., Niazi, A., Mohammad Abadi, M., Esmailizadeh, A. and Mehdizadeh Gazooei, Y. 2014. Bioinformatics analysis of the BMP15 exon 2 in Tali and Beetal goats. J. Modern Genetics. 9-1: 117-127. (In Persian).
13.Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series. 41: 95-98.
14.Hediger, R., Ansari, H.A. and Stranzinger, G.F. 1991. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. J. Cytogen. Geno. Res. 57: 127- 134.
15.Ikemura, T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. J. Mol. Biol. Evol. 2: 13-34.
16.Jiang, S.T. 1998. Contribution of muscle proteinases to meat tenderization. Proceedings of the National science Council, Republic of China. Part B, Life. Sci. 22: 97–107.
17.Jones, P.A. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Natu. Rev. Genet. 13: 484-492.
18.Kappes, S.M., Keele, J.W., Stone, R.T., Sonstegard, T.S., Smith, T.P, L., Mcgraw, R.A., Lopezcorrales, N.L. and Beattie, C.W. 1997. A second-generation linkage map of the bovine genome. J. Geno. Res. 7: 235. 19.Khalid, R. 2010. Application of data mining in bioinformatics. Indian. J. Comp. Sci. Eng. 1: 114-118.
20.Khosravi, M., Fakhr Kazemi, M., Mohamadi, A. and Nasiri, M.R. 1389. Study on the Genetic polymorphisms of candidate genes (Calpastatin and BoLA) in Sistani cattle using PCR-RFLP. J. Agri. Bio. technol. 9: 35-42.
21.Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. J. Mol. Biol. Evol. 33: 1870–4.
22.Mahdavi Mamghani, A., Shoja, J., Pirany, N. and Elyasi, G. 1388. PCR-SSCP comparison of the Calpastatin gene polymorphism in Iranian Ghezel sheep and Sarabi cows. J. Anim. Sci. Res. 19: 1-8.
23.Mohammadabadi, M.R. 2016. Allelic Diversity of Calpastatin Gene in Sanjabi Sheep. J. Molecular And Cellular Research. 28-3: 395-402. (In Persian).
24.Nazarian, Sh., Arefpur, M.A., Bagheri pur, M.J. and Oladi, Gh. 2013. Bioinformatics study and review of gene expression optimized for subunit B
chloratoxin as a candidate for vaccine. J. Isfahan. Medi. School. 32: 270-279.
25.Nei, M. 2007. The new mutation theory of phenotypic evolution. J. Procee. Nati. Acad. Sci. USA.104: 12235-12242.
26.Palmer, B.R., Hickford, J.G.H. and Bickerstaffe, R. 1997. A candidate gene approach to animal quality traits. Proceedings of the New Zealand Society of Animal Production. 57: 294-296.
27.Peden, J.F. 2000. Analysis of codon usage. Doctoral dissertation, University of Nottingham.
28.Rao, Y.S., Chai, X.W., Wang, Z.H.F., Nie, Q.H. and Zhang, X.Q. 2013. Impact of GC content on gene expression pattern in chicken. J. Gene. Selec. Evol. 45:9.
29.Stamatakis, A. 2005. Phylogenetics: applications, software and challenges. J. Canc. Geno. Prot. 2: 301-306.
30.Taylor, R., Christiansen, J. and Goll, D. 1991. Immunolocalization of the calpains and calpastatin in human and bovine platelets. J. Biom. Bioch. Acta, 50: 491–498.
31.Bergund, U.W. and Helleday, T.h. 2017. Mutations in cancer cause gain of Cyteine, Histidine, and Tryptophan the expense of a net loss of Arginine on the proteome level. J. Bio. Mole. 7:
32.Usmanova, N.M. and Tomilin, N.V. 2008. Bioinformatic analysis of retroelement associated sequences in human and mouse promoter. J. Wor. Acad. Sci. Eng. Tech. 2: 146–154.
33.Wei, Y., Wang, J. and Xia, X. 2016. Coevolution between stop codon usage and release factors in bacterial species. J. Mol. Biol. Evol. 33-9: 2357-2367.
34.Wright, F. 1990. The ‘effective number of codons’ used in a gene. Gene. 87: 23-29.